Properties

Label 2-3e5-3.2-c6-0-52
Degree $2$
Conductor $243$
Sign $1$
Analytic cond. $55.9031$
Root an. cond. $7.47684$
Motivic weight $6$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 64·4-s + 683·7-s + 3.52e3·13-s + 4.09e3·16-s − 2.26e3·19-s + 1.56e4·25-s + 4.37e4·28-s − 5.92e4·31-s + 3.02e3·37-s − 1.53e5·43-s + 3.48e5·49-s + 2.25e5·52-s − 4.20e5·61-s + 2.62e5·64-s + 1.72e5·67-s + 6.38e5·73-s − 1.45e5·76-s − 7.33e5·79-s + 2.40e6·91-s + 1.60e6·97-s + 1.00e6·100-s + 1.12e6·103-s − 1.34e5·109-s + 2.79e6·112-s + ⋯
L(s)  = 1  + 4-s + 1.99·7-s + 1.60·13-s + 16-s − 0.330·19-s + 25-s + 1.99·28-s − 1.98·31-s + 0.0596·37-s − 1.93·43-s + 2.96·49-s + 1.60·52-s − 1.85·61-s + 64-s + 0.574·67-s + 1.64·73-s − 0.330·76-s − 1.48·79-s + 3.19·91-s + 1.76·97-s + 100-s + 1.03·103-s − 0.103·109-s + 1.99·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $1$
Analytic conductor: \(55.9031\)
Root analytic conductor: \(7.47684\)
Motivic weight: \(6\)
Rational: yes
Arithmetic: yes
Character: $\chi_{243} (242, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(3.914945511\)
\(L(\frac12)\) \(\approx\) \(3.914945511\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
5 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
7 \( 1 - 683 T + p^{6} T^{2} \)
11 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
13 \( 1 - 3527 T + p^{6} T^{2} \)
17 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
19 \( 1 + 2269 T + p^{6} T^{2} \)
23 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
29 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
31 \( 1 + 59221 T + p^{6} T^{2} \)
37 \( 1 - 3023 T + p^{6} T^{2} \)
41 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
43 \( 1 + 153973 T + p^{6} T^{2} \)
47 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
53 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
59 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
61 \( 1 + 420838 T + p^{6} T^{2} \)
67 \( 1 - 172874 T + p^{6} T^{2} \)
71 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
73 \( 1 - 638066 T + p^{6} T^{2} \)
79 \( 1 + 733069 T + p^{6} T^{2} \)
83 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
89 \( ( 1 - p^{3} T )( 1 + p^{3} T ) \)
97 \( 1 - 1608263 T + p^{6} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.07966753464351819712385130111, −10.56398450277929876092233643508, −8.809509925382378112625204423949, −8.102016871504924403262673058347, −7.14484284260173000057381453603, −5.96489751490782875554400634319, −4.91925597754285058400977041564, −3.54756835987430544575636903139, −1.96149843421224193380747139469, −1.24396368371873547203781654379, 1.24396368371873547203781654379, 1.96149843421224193380747139469, 3.54756835987430544575636903139, 4.91925597754285058400977041564, 5.96489751490782875554400634319, 7.14484284260173000057381453603, 8.102016871504924403262673058347, 8.809509925382378112625204423949, 10.56398450277929876092233643508, 11.07966753464351819712385130111

Graph of the $Z$-function along the critical line