L(s) = 1 | + (0.990 − 0.360i)2-s + (−0.680 + 0.571i)4-s + (0.303 + 1.71i)5-s + (1.88 + 1.58i)7-s + (−1.52 + 2.63i)8-s + (0.920 + 1.59i)10-s + (0.217 − 1.23i)11-s + (4.27 + 1.55i)13-s + (2.43 + 0.886i)14-s + (−0.249 + 1.41i)16-s + (−3.32 − 5.75i)17-s + (−0.124 + 0.215i)19-s + (−1.18 − 0.996i)20-s + (−0.229 − 1.30i)22-s + (−0.645 + 0.541i)23-s + ⋯ |
L(s) = 1 | + (0.700 − 0.254i)2-s + (−0.340 + 0.285i)4-s + (0.135 + 0.768i)5-s + (0.712 + 0.597i)7-s + (−0.538 + 0.932i)8-s + (0.291 + 0.504i)10-s + (0.0656 − 0.372i)11-s + (1.18 + 0.431i)13-s + (0.651 + 0.237i)14-s + (−0.0622 + 0.353i)16-s + (−0.806 − 1.39i)17-s + (−0.0285 + 0.0495i)19-s + (−0.265 − 0.222i)20-s + (−0.0489 − 0.277i)22-s + (−0.134 + 0.112i)23-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(0.769−0.638i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(0.769−0.638i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
0.769−0.638i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), 0.769−0.638i)
|
Particular Values
L(1) |
≈ |
1.56445+0.564787i |
L(21) |
≈ |
1.56445+0.564787i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−0.990+0.360i)T+(1.53−1.28i)T2 |
| 5 | 1+(−0.303−1.71i)T+(−4.69+1.71i)T2 |
| 7 | 1+(−1.88−1.58i)T+(1.21+6.89i)T2 |
| 11 | 1+(−0.217+1.23i)T+(−10.3−3.76i)T2 |
| 13 | 1+(−4.27−1.55i)T+(9.95+8.35i)T2 |
| 17 | 1+(3.32+5.75i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.124−0.215i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.645−0.541i)T+(3.99−22.6i)T2 |
| 29 | 1+(0.481−0.175i)T+(22.2−18.6i)T2 |
| 31 | 1+(0.628−0.527i)T+(5.38−30.5i)T2 |
| 37 | 1+(1.30+2.25i)T+(−18.5+32.0i)T2 |
| 41 | 1+(7.66+2.78i)T+(31.4+26.3i)T2 |
| 43 | 1+(−0.751+4.26i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−4.06−3.40i)T+(8.16+46.2i)T2 |
| 53 | 1−10.4T+53T2 |
| 59 | 1+(−0.522−2.96i)T+(−55.4+20.1i)T2 |
| 61 | 1+(−2.20−1.85i)T+(10.5+60.0i)T2 |
| 67 | 1+(9.47+3.44i)T+(51.3+43.0i)T2 |
| 71 | 1+(−0.0447−0.0774i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−2.66+4.60i)T+(−36.5−63.2i)T2 |
| 79 | 1+(4.48−1.63i)T+(60.5−50.7i)T2 |
| 83 | 1+(−7.55+2.75i)T+(63.5−53.3i)T2 |
| 89 | 1+(−3.35+5.80i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−0.953+5.40i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.05058285331134209641046698509, −11.46978554060359509676891080826, −10.66140955286506617565192043765, −9.071191499000125101843658197238, −8.515565572753493246779592944754, −7.12508213595517298305687192546, −5.89433860834224475084403659748, −4.83744317397033787050424497051, −3.59044222523894312716472521921, −2.37834065101223502607858566078,
1.33458270119305769740771808623, 3.82333626792328727822694487069, 4.64361913737837403610789286196, 5.67315686015966979252044217455, 6.71276806145360121296662959480, 8.223190347454000023543721791592, 8.925097478717448609566783006698, 10.18565172299778347452590054204, 11.01265969196807131842359003907, 12.32164030032221860445737819113