L(s) = 1 | + (0.614 + 0.515i)2-s + (−0.235 − 1.33i)4-s + (−2.58 − 0.940i)5-s + (0.412 − 2.34i)7-s + (1.34 − 2.33i)8-s + (−1.10 − 1.90i)10-s + (−0.235 + 0.0855i)11-s + (2.00 − 1.67i)13-s + (1.45 − 1.22i)14-s + (−0.524 + 0.190i)16-s + (−0.146 − 0.254i)17-s + (1.39 − 2.41i)19-s + (−0.648 + 3.67i)20-s + (−0.188 − 0.0685i)22-s + (1.16 + 6.58i)23-s + ⋯ |
L(s) = 1 | + (0.434 + 0.364i)2-s + (−0.117 − 0.668i)4-s + (−1.15 − 0.420i)5-s + (0.155 − 0.884i)7-s + (0.475 − 0.823i)8-s + (−0.348 − 0.603i)10-s + (−0.0708 + 0.0257i)11-s + (0.554 − 0.465i)13-s + (0.390 − 0.327i)14-s + (−0.131 + 0.0477i)16-s + (−0.0355 − 0.0616i)17-s + (0.319 − 0.553i)19-s + (−0.144 + 0.822i)20-s + (−0.0401 − 0.0146i)22-s + (0.242 + 1.37i)23-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(0.334+0.942i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(0.334+0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
0.334+0.942i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(136,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), 0.334+0.942i)
|
Particular Values
L(1) |
≈ |
0.991236−0.699828i |
L(21) |
≈ |
0.991236−0.699828i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−0.614−0.515i)T+(0.347+1.96i)T2 |
| 5 | 1+(2.58+0.940i)T+(3.83+3.21i)T2 |
| 7 | 1+(−0.412+2.34i)T+(−6.57−2.39i)T2 |
| 11 | 1+(0.235−0.0855i)T+(8.42−7.07i)T2 |
| 13 | 1+(−2.00+1.67i)T+(2.25−12.8i)T2 |
| 17 | 1+(0.146+0.254i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.39+2.41i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−1.16−6.58i)T+(−21.6+7.86i)T2 |
| 29 | 1+(−0.271−0.228i)T+(5.03+28.5i)T2 |
| 31 | 1+(−0.480−2.72i)T+(−29.1+10.6i)T2 |
| 37 | 1+(−3.49−6.05i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−7.44+6.24i)T+(7.11−40.3i)T2 |
| 43 | 1+(0.244−0.0891i)T+(32.9−27.6i)T2 |
| 47 | 1+(−1.98+11.2i)T+(−44.1−16.0i)T2 |
| 53 | 1+5.43T+53T2 |
| 59 | 1+(−5.61−2.04i)T+(45.1+37.9i)T2 |
| 61 | 1+(2.05−11.6i)T+(−57.3−20.8i)T2 |
| 67 | 1+(−1.38+1.16i)T+(11.6−65.9i)T2 |
| 71 | 1+(0.185+0.320i)T+(−35.5+61.4i)T2 |
| 73 | 1+(2.51−4.35i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−0.614−0.516i)T+(13.7+77.7i)T2 |
| 83 | 1+(−2.11−1.77i)T+(14.4+81.7i)T2 |
| 89 | 1+(−5.22+9.05i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−13.9+5.07i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87977939278536059869681914602, −11.00709451285926415698059333703, −10.13433498266989367178984732028, −8.931615354144748414358797308164, −7.73783693639561184034104661546, −6.99922479368061964491743494678, −5.60835540233962332377433746898, −4.54849542664153722510807865347, −3.64108175830880532467656655183, −0.930147933845549804229175208277,
2.53354513126967766156119519342, 3.70326516729052356650578668524, 4.65423568644921511740676293150, 6.17945872986257115111090914139, 7.57727878032114530527210880033, 8.245018518645119213245463473597, 9.229781392161143327439377342973, 10.89688064997335796418235702953, 11.44557364329854064145017543180, 12.26664675898722879723125588317