Properties

Label 2-3e5-243.103-c1-0-13
Degree $2$
Conductor $243$
Sign $0.265 + 0.964i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.36 − 0.380i)2-s + (1.70 − 0.284i)3-s + (0.0120 + 0.00727i)4-s + (−2.11 + 0.0820i)5-s + (−2.44 − 0.261i)6-s + (1.64 + 0.257i)7-s + (1.93 + 2.05i)8-s + (2.83 − 0.971i)9-s + (2.92 + 0.692i)10-s + (−0.699 − 5.12i)11-s + (0.0226 + 0.00899i)12-s + (3.44 − 5.02i)13-s + (−2.15 − 0.979i)14-s + (−3.58 + 0.741i)15-s + (−1.87 − 3.56i)16-s + (−1.16 + 0.584i)17-s + ⋯
L(s)  = 1  + (−0.966 − 0.269i)2-s + (0.986 − 0.164i)3-s + (0.00602 + 0.00363i)4-s + (−0.945 + 0.0366i)5-s + (−0.997 − 0.106i)6-s + (0.623 + 0.0974i)7-s + (0.683 + 0.724i)8-s + (0.946 − 0.323i)9-s + (0.924 + 0.219i)10-s + (−0.210 − 1.54i)11-s + (0.00653 + 0.00259i)12-s + (0.954 − 1.39i)13-s + (−0.576 − 0.261i)14-s + (−0.926 + 0.191i)15-s + (−0.469 − 0.890i)16-s + (−0.282 + 0.141i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $0.265 + 0.964i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ 0.265 + 0.964i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.711696 - 0.542260i\)
\(L(\frac12)\) \(\approx\) \(0.711696 - 0.542260i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.70 + 0.284i)T \)
good2 \( 1 + (1.36 + 0.380i)T + (1.71 + 1.03i)T^{2} \)
5 \( 1 + (2.11 - 0.0820i)T + (4.98 - 0.387i)T^{2} \)
7 \( 1 + (-1.64 - 0.257i)T + (6.66 + 2.13i)T^{2} \)
11 \( 1 + (0.699 + 5.12i)T + (-10.5 + 2.94i)T^{2} \)
13 \( 1 + (-3.44 + 5.02i)T + (-4.68 - 12.1i)T^{2} \)
17 \( 1 + (1.16 - 0.584i)T + (10.1 - 13.6i)T^{2} \)
19 \( 1 + (-0.0591 - 1.01i)T + (-18.8 + 2.20i)T^{2} \)
23 \( 1 + (0.0433 - 0.112i)T + (-17.0 - 15.4i)T^{2} \)
29 \( 1 + (2.48 + 1.77i)T + (9.38 + 27.4i)T^{2} \)
31 \( 1 + (-2.39 + 2.74i)T + (-4.19 - 30.7i)T^{2} \)
37 \( 1 + (-4.61 - 6.20i)T + (-10.6 + 35.4i)T^{2} \)
41 \( 1 + (0.596 - 2.31i)T + (-35.8 - 19.8i)T^{2} \)
43 \( 1 + (-3.38 - 3.07i)T + (4.16 + 42.7i)T^{2} \)
47 \( 1 + (-7.20 - 8.25i)T + (-6.36 + 46.5i)T^{2} \)
53 \( 1 + (0.302 - 1.71i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-8.73 + 3.56i)T + (42.1 - 41.3i)T^{2} \)
61 \( 1 + (-1.96 + 1.18i)T + (28.4 - 53.9i)T^{2} \)
67 \( 1 + (9.88 - 7.06i)T + (21.6 - 63.3i)T^{2} \)
71 \( 1 + (-1.31 - 4.38i)T + (-59.3 + 39.0i)T^{2} \)
73 \( 1 + (4.13 - 0.979i)T + (65.2 - 32.7i)T^{2} \)
79 \( 1 + (10.9 - 10.7i)T + (1.53 - 78.9i)T^{2} \)
83 \( 1 + (3.80 + 14.7i)T + (-72.6 + 40.0i)T^{2} \)
89 \( 1 + (3.04 - 10.1i)T + (-74.3 - 48.9i)T^{2} \)
97 \( 1 + (11.8 + 0.461i)T + (96.7 + 7.51i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.49141617898419921259967174871, −10.92177007945167338148066740017, −9.887693604366256730175894584607, −8.637536405653337145368398309948, −8.213276280868385386753296735429, −7.68666483928655693842376203514, −5.81724125219116982574927075811, −4.18527919703334796990538630145, −2.93712518072897562817672850772, −1.01745512570601493935931686471, 1.83023669900926349935102953253, 3.96902947257221708834181352032, 4.51297629800983172997030104142, 7.05090579243458757482649107858, 7.50129781678702836811655042264, 8.522161719727996390824412586256, 9.111198375624591891776353510526, 10.07522785943922450758422883547, 11.14300135470232778005879087189, 12.28536088131161967760431180687

Graph of the $Z$-function along the critical line