L(s) = 1 | + (25.4 − 14.6i)2-s + (304 − 526. i)4-s + (712. + 411. i)5-s + (−983.5 − 1.70e3i)7-s − 1.03e4i·8-s + 2.41e4·10-s + (−1.08e4 + 6.29e3i)11-s + (2.27e4 − 3.94e4i)13-s + (−5.00e4 − 2.89e4i)14-s + (−7.42e4 − 1.28e5i)16-s − 5.96e4i·17-s + 1.52e5·19-s + (4.33e5 − 2.50e5i)20-s + (−1.84e5 + 3.20e5i)22-s + (1.13e5 + 6.56e4i)23-s + ⋯ |
L(s) = 1 | + (1.59 − 0.918i)2-s + (1.18 − 2.05i)4-s + (1.14 + 0.658i)5-s + (−0.409 − 0.709i)7-s − 2.52i·8-s + 2.41·10-s + (−0.744 + 0.429i)11-s + (0.796 − 1.37i)13-s + (−1.30 − 0.752i)14-s + (−1.13 − 1.96i)16-s − 0.713i·17-s + 1.16·19-s + (2.70 − 1.56i)20-s + (−0.789 + 1.36i)22-s + (0.406 + 0.234i)23-s + ⋯ |
Λ(s)=(=(81s/2ΓC(s)L(s)(−0.342+0.939i)Λ(9−s)
Λ(s)=(=(81s/2ΓC(s+4)L(s)(−0.342+0.939i)Λ(1−s)
Degree: |
2 |
Conductor: |
81
= 34
|
Sign: |
−0.342+0.939i
|
Analytic conductor: |
32.9976 |
Root analytic conductor: |
5.74435 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ81(53,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 81, ( :4), −0.342+0.939i)
|
Particular Values
L(29) |
≈ |
3.40355−4.86078i |
L(21) |
≈ |
3.40355−4.86078i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−25.4+14.6i)T+(128−221.i)T2 |
| 5 | 1+(−712.−411.i)T+(1.95e5+3.38e5i)T2 |
| 7 | 1+(983.5+1.70e3i)T+(−2.88e6+4.99e6i)T2 |
| 11 | 1+(1.08e4−6.29e3i)T+(1.07e8−1.85e8i)T2 |
| 13 | 1+(−2.27e4+3.94e4i)T+(−4.07e8−7.06e8i)T2 |
| 17 | 1+5.96e4iT−6.97e9T2 |
| 19 | 1−1.52e5T+1.69e10T2 |
| 23 | 1+(−1.13e5−6.56e4i)T+(3.91e10+6.78e10i)T2 |
| 29 | 1+(5.09e5−2.94e5i)T+(2.50e11−4.33e11i)T2 |
| 31 | 1+(−8.21e4+1.42e5i)T+(−4.26e11−7.38e11i)T2 |
| 37 | 1+6.63e5T+3.51e12T2 |
| 41 | 1+(−8.12e5−4.69e5i)T+(3.99e12+6.91e12i)T2 |
| 43 | 1+(2.87e5+4.98e5i)T+(−5.84e12+1.01e13i)T2 |
| 47 | 1+(7.99e6−4.61e6i)T+(1.19e13−2.06e13i)T2 |
| 53 | 1−1.03e7iT−6.22e13T2 |
| 59 | 1+(−4.36e6−2.51e6i)T+(7.34e13+1.27e14i)T2 |
| 61 | 1+(−9.60e6−1.66e7i)T+(−9.58e13+1.66e14i)T2 |
| 67 | 1+(−2.99e5+5.17e5i)T+(−2.03e14−3.51e14i)T2 |
| 71 | 1−2.92e7iT−6.45e14T2 |
| 73 | 1−1.28e7T+8.06e14T2 |
| 79 | 1+(−1.17e7−2.04e7i)T+(−7.58e14+1.31e15i)T2 |
| 83 | 1+(−2.89e7+1.67e7i)T+(1.12e15−1.95e15i)T2 |
| 89 | 1+2.82e7iT−3.93e15T2 |
| 97 | 1+(6.82e7+1.18e8i)T+(−3.91e15+6.78e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.79050577280421776201627179869, −11.30431461026446242842591964433, −10.41571170682040141510629263326, −9.798896288008967586185600070921, −7.24386836750511443779637780404, −5.95775917723816383732082545175, −5.13146208090468048727092180639, −3.43524444481153067024501430182, −2.61336520083607999854862484340, −1.11637042076213741673761342588,
1.99399241660350366866713959910, 3.47718258096914453659246642738, 5.02203283637672483115106277881, 5.79737468239884109229724063311, 6.66325230025739260424999353779, 8.298272524065041022044410712408, 9.467241754996192991242606249924, 11.35316681000568789343291472602, 12.49481343785249503135280411659, 13.34450120501815180417643526288