Properties

Label 2-3e4-81.16-c1-0-2
Degree $2$
Conductor $81$
Sign $0.919 - 0.392i$
Analytic cond. $0.646788$
Root an. cond. $0.804231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.658 + 0.156i)2-s + (1.15 + 1.28i)3-s + (−1.37 − 0.692i)4-s + (0.563 − 0.756i)5-s + (0.560 + 1.02i)6-s + (1.22 + 0.802i)7-s + (−1.83 − 1.54i)8-s + (−0.324 + 2.98i)9-s + (0.488 − 0.410i)10-s + (−6.07 + 0.710i)11-s + (−0.701 − 2.57i)12-s + (1.50 − 5.02i)13-s + (0.678 + 0.718i)14-s + (1.62 − 0.148i)15-s + (0.873 + 1.17i)16-s + (−0.00536 − 0.0304i)17-s + ⋯
L(s)  = 1  + (0.465 + 0.110i)2-s + (0.667 + 0.744i)3-s + (−0.689 − 0.346i)4-s + (0.251 − 0.338i)5-s + (0.228 + 0.420i)6-s + (0.461 + 0.303i)7-s + (−0.649 − 0.544i)8-s + (−0.108 + 0.994i)9-s + (0.154 − 0.129i)10-s + (−1.83 + 0.214i)11-s + (−0.202 − 0.744i)12-s + (0.417 − 1.39i)13-s + (0.181 + 0.192i)14-s + (0.420 − 0.0384i)15-s + (0.218 + 0.293i)16-s + (−0.00130 − 0.00737i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.919 - 0.392i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.919 - 0.392i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.919 - 0.392i$
Analytic conductor: \(0.646788\)
Root analytic conductor: \(0.804231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (16, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :1/2),\ 0.919 - 0.392i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.19539 + 0.244694i\)
\(L(\frac12)\) \(\approx\) \(1.19539 + 0.244694i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.15 - 1.28i)T \)
good2 \( 1 + (-0.658 - 0.156i)T + (1.78 + 0.897i)T^{2} \)
5 \( 1 + (-0.563 + 0.756i)T + (-1.43 - 4.78i)T^{2} \)
7 \( 1 + (-1.22 - 0.802i)T + (2.77 + 6.42i)T^{2} \)
11 \( 1 + (6.07 - 0.710i)T + (10.7 - 2.53i)T^{2} \)
13 \( 1 + (-1.50 + 5.02i)T + (-10.8 - 7.14i)T^{2} \)
17 \( 1 + (0.00536 + 0.0304i)T + (-15.9 + 5.81i)T^{2} \)
19 \( 1 + (-0.634 + 3.60i)T + (-17.8 - 6.49i)T^{2} \)
23 \( 1 + (0.0873 - 0.0574i)T + (9.10 - 21.1i)T^{2} \)
29 \( 1 + (0.351 - 0.372i)T + (-1.68 - 28.9i)T^{2} \)
31 \( 1 + (-0.475 - 8.15i)T + (-30.7 + 3.59i)T^{2} \)
37 \( 1 + (-5.42 - 1.97i)T + (28.3 + 23.7i)T^{2} \)
41 \( 1 + (-4.26 + 1.01i)T + (36.6 - 18.4i)T^{2} \)
43 \( 1 + (-0.545 + 1.26i)T + (-29.5 - 31.2i)T^{2} \)
47 \( 1 + (0.326 - 5.60i)T + (-46.6 - 5.45i)T^{2} \)
53 \( 1 + (4.89 + 8.47i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-5.61 - 0.655i)T + (57.4 + 13.6i)T^{2} \)
61 \( 1 + (-1.53 + 0.770i)T + (36.4 - 48.9i)T^{2} \)
67 \( 1 + (1.87 + 1.99i)T + (-3.89 + 66.8i)T^{2} \)
71 \( 1 + (-1.66 + 1.39i)T + (12.3 - 69.9i)T^{2} \)
73 \( 1 + (6.38 + 5.35i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (12.2 + 2.90i)T + (70.5 + 35.4i)T^{2} \)
83 \( 1 + (-17.3 - 4.11i)T + (74.1 + 37.2i)T^{2} \)
89 \( 1 + (10.6 + 8.96i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (4.18 + 5.62i)T + (-27.8 + 92.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.51404923978998856479479786785, −13.28683811747923075917150856108, −12.91360949207815288393212511474, −10.85247850210870889817348585466, −9.993715623826450146824463552063, −8.824638550275261887397470863925, −7.892688110967578603507253835829, −5.43648157697785423328567007687, −4.89174771744846840816287325156, −3.04333113009479449928051231715, 2.56756167427398023149752262738, 4.21565118652582464280513870094, 5.92742095323185510942204254356, 7.60186514693830816972114120059, 8.416089480787785572411142942377, 9.718590439420850352264976471949, 11.25800795679910519517895088749, 12.49963700596156106032882369239, 13.41895805406226211867568241902, 14.00645944850592540322838693669

Graph of the $Z$-function along the critical line