Properties

Label 2-3e4-27.13-c11-0-11
Degree $2$
Conductor $81$
Sign $0.588 - 0.808i$
Analytic cond. $62.2357$
Root an. cond. $7.88896$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.48 − 14.0i)2-s + (1.73e3 − 630. i)4-s + (8.75e3 + 7.34e3i)5-s + (−7.41e4 − 2.69e4i)7-s + (−2.78e4 − 4.81e4i)8-s + (8.16e4 − 1.41e5i)10-s + (−3.46e5 + 2.90e5i)11-s + (4.03e4 − 2.28e5i)13-s + (−1.95e5 + 1.11e6i)14-s + (2.28e6 − 1.91e6i)16-s + (8.69e4 − 1.50e5i)17-s + (7.81e6 + 1.35e7i)19-s + (1.97e7 + 7.20e6i)20-s + (4.94e6 + 4.15e6i)22-s + (3.55e7 − 1.29e7i)23-s + ⋯
L(s)  = 1  + (−0.0548 − 0.311i)2-s + (0.845 − 0.307i)4-s + (1.25 + 1.05i)5-s + (−1.66 − 0.606i)7-s + (−0.300 − 0.519i)8-s + (0.258 − 0.447i)10-s + (−0.647 + 0.543i)11-s + (0.0301 − 0.171i)13-s + (−0.0973 + 0.552i)14-s + (0.544 − 0.456i)16-s + (0.0148 − 0.0257i)17-s + (0.723 + 1.25i)19-s + (1.38 + 0.503i)20-s + (0.204 + 0.171i)22-s + (1.15 − 0.419i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.588 - 0.808i)\, \overline{\Lambda}(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & (0.588 - 0.808i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $0.588 - 0.808i$
Analytic conductor: \(62.2357\)
Root analytic conductor: \(7.88896\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: $\chi_{81} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :11/2),\ 0.588 - 0.808i)\)

Particular Values

\(L(6)\) \(\approx\) \(2.01588 + 1.02544i\)
\(L(\frac12)\) \(\approx\) \(2.01588 + 1.02544i\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (2.48 + 14.0i)T + (-1.92e3 + 700. i)T^{2} \)
5 \( 1 + (-8.75e3 - 7.34e3i)T + (8.47e6 + 4.80e7i)T^{2} \)
7 \( 1 + (7.41e4 + 2.69e4i)T + (1.51e9 + 1.27e9i)T^{2} \)
11 \( 1 + (3.46e5 - 2.90e5i)T + (4.95e10 - 2.80e11i)T^{2} \)
13 \( 1 + (-4.03e4 + 2.28e5i)T + (-1.68e12 - 6.12e11i)T^{2} \)
17 \( 1 + (-8.69e4 + 1.50e5i)T + (-1.71e13 - 2.96e13i)T^{2} \)
19 \( 1 + (-7.81e6 - 1.35e7i)T + (-5.82e13 + 1.00e14i)T^{2} \)
23 \( 1 + (-3.55e7 + 1.29e7i)T + (7.29e14 - 6.12e14i)T^{2} \)
29 \( 1 + (-1.17e7 - 6.66e7i)T + (-1.14e16 + 4.17e15i)T^{2} \)
31 \( 1 + (1.51e7 - 5.50e6i)T + (1.94e16 - 1.63e16i)T^{2} \)
37 \( 1 + (4.03e8 - 6.98e8i)T + (-8.89e16 - 1.54e17i)T^{2} \)
41 \( 1 + (1.15e8 - 6.53e8i)T + (-5.17e17 - 1.88e17i)T^{2} \)
43 \( 1 + (-6.60e8 + 5.54e8i)T + (1.61e17 - 9.15e17i)T^{2} \)
47 \( 1 + (-2.58e9 - 9.40e8i)T + (1.89e18 + 1.58e18i)T^{2} \)
53 \( 1 + 3.14e9T + 9.26e18T^{2} \)
59 \( 1 + (-1.09e9 - 9.22e8i)T + (5.23e18 + 2.96e19i)T^{2} \)
61 \( 1 + (9.23e8 + 3.36e8i)T + (3.33e19 + 2.79e19i)T^{2} \)
67 \( 1 + (2.66e9 - 1.51e10i)T + (-1.14e20 - 4.17e19i)T^{2} \)
71 \( 1 + (2.55e9 - 4.42e9i)T + (-1.15e20 - 2.00e20i)T^{2} \)
73 \( 1 + (-6.02e8 - 1.04e9i)T + (-1.56e20 + 2.71e20i)T^{2} \)
79 \( 1 + (-3.10e9 - 1.75e10i)T + (-7.02e20 + 2.55e20i)T^{2} \)
83 \( 1 + (1.42e9 + 8.06e9i)T + (-1.21e21 + 4.40e20i)T^{2} \)
89 \( 1 + (-1.31e10 - 2.27e10i)T + (-1.38e21 + 2.40e21i)T^{2} \)
97 \( 1 + (6.33e10 - 5.31e10i)T + (1.24e21 - 7.04e21i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.35055511627410209146316419060, −10.71243346936336890994489135676, −10.19464588405610947265693690806, −9.560685583366919305594745872663, −7.23750028819828216866559951762, −6.57842818054512980023637694026, −5.65553314906963068555483771821, −3.27056371998199097111510627196, −2.63859817388306007152716424772, −1.24069292198396646594498312602, 0.54768747405403747831438608124, 2.19614411369261321654210296337, 3.13287140308460314824565645219, 5.36133840805305543618382678330, 6.03987713904663153214886986202, 7.16636458856659135472031931145, 8.870589167544759280219475159748, 9.418702475878874670270223920212, 10.75899778409385151301597453079, 12.23380417905670372622423014587

Graph of the $Z$-function along the critical line