Properties

Label 2-3e4-1.1-c11-0-32
Degree $2$
Conductor $81$
Sign $-1$
Analytic cond. $62.2357$
Root an. cond. $7.88896$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 23.4·2-s − 1.50e3·4-s + 3.21e3·5-s + 371.·7-s − 8.30e4·8-s + 7.51e4·10-s + 3.81e5·11-s + 3.12e5·13-s + 8.70e3·14-s + 1.12e6·16-s + 3.99e6·17-s − 1.78e7·19-s − 4.81e6·20-s + 8.92e6·22-s + 4.35e7·23-s − 3.85e7·25-s + 7.30e6·26-s − 5.57e5·28-s − 1.19e8·29-s + 2.08e8·31-s + 1.96e8·32-s + 9.35e7·34-s + 1.19e6·35-s − 7.64e8·37-s − 4.18e8·38-s − 2.66e8·40-s − 6.66e8·41-s + ⋯
L(s)  = 1  + 0.517·2-s − 0.732·4-s + 0.459·5-s + 0.00836·7-s − 0.896·8-s + 0.237·10-s + 0.713·11-s + 0.233·13-s + 0.00432·14-s + 0.268·16-s + 0.682·17-s − 1.65·19-s − 0.336·20-s + 0.369·22-s + 1.41·23-s − 0.788·25-s + 0.120·26-s − 0.00612·28-s − 1.07·29-s + 1.30·31-s + 1.03·32-s + 0.353·34-s + 0.00384·35-s − 1.81·37-s − 0.856·38-s − 0.411·40-s − 0.899·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $-1$
Analytic conductor: \(62.2357\)
Root analytic conductor: \(7.88896\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81,\ (\ :11/2),\ -1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 23.4T + 2.04e3T^{2} \)
5 \( 1 - 3.21e3T + 4.88e7T^{2} \)
7 \( 1 - 371.T + 1.97e9T^{2} \)
11 \( 1 - 3.81e5T + 2.85e11T^{2} \)
13 \( 1 - 3.12e5T + 1.79e12T^{2} \)
17 \( 1 - 3.99e6T + 3.42e13T^{2} \)
19 \( 1 + 1.78e7T + 1.16e14T^{2} \)
23 \( 1 - 4.35e7T + 9.52e14T^{2} \)
29 \( 1 + 1.19e8T + 1.22e16T^{2} \)
31 \( 1 - 2.08e8T + 2.54e16T^{2} \)
37 \( 1 + 7.64e8T + 1.77e17T^{2} \)
41 \( 1 + 6.66e8T + 5.50e17T^{2} \)
43 \( 1 + 6.79e8T + 9.29e17T^{2} \)
47 \( 1 - 1.02e9T + 2.47e18T^{2} \)
53 \( 1 + 1.41e9T + 9.26e18T^{2} \)
59 \( 1 + 4.02e9T + 3.01e19T^{2} \)
61 \( 1 - 7.72e8T + 4.35e19T^{2} \)
67 \( 1 + 2.85e7T + 1.22e20T^{2} \)
71 \( 1 + 2.72e10T + 2.31e20T^{2} \)
73 \( 1 + 5.25e9T + 3.13e20T^{2} \)
79 \( 1 - 1.87e10T + 7.47e20T^{2} \)
83 \( 1 + 6.77e10T + 1.28e21T^{2} \)
89 \( 1 + 4.62e10T + 2.77e21T^{2} \)
97 \( 1 - 3.52e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.78986427951576016488653685226, −10.38079746446772104817822525901, −9.275340740351081177449486253626, −8.382306707095298340596618270278, −6.66187847913896212747932006373, −5.57041164952565022190848069742, −4.39586185582340307741536145341, −3.24393569257410695369118942152, −1.54549616300563311069949253405, 0, 1.54549616300563311069949253405, 3.24393569257410695369118942152, 4.39586185582340307741536145341, 5.57041164952565022190848069742, 6.66187847913896212747932006373, 8.382306707095298340596618270278, 9.275340740351081177449486253626, 10.38079746446772104817822525901, 11.78986427951576016488653685226

Graph of the $Z$-function along the critical line