Properties

Label 2-3e4-1.1-c11-0-21
Degree $2$
Conductor $81$
Sign $1$
Analytic cond. $62.2357$
Root an. cond. $7.88896$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 52.9·2-s + 755.·4-s + 9.07e3·5-s + 9.37e3·7-s − 6.84e4·8-s + 4.80e5·10-s + 1.38e5·11-s + 6.94e4·13-s + 4.96e5·14-s − 5.17e6·16-s + 8.48e6·17-s + 9.50e6·19-s + 6.86e6·20-s + 7.33e6·22-s + 3.59e7·23-s + 3.35e7·25-s + 3.67e6·26-s + 7.08e6·28-s − 3.94e7·29-s − 2.31e8·31-s − 1.33e8·32-s + 4.49e8·34-s + 8.51e7·35-s − 2.47e8·37-s + 5.03e8·38-s − 6.21e8·40-s + 1.32e9·41-s + ⋯
L(s)  = 1  + 1.17·2-s + 0.368·4-s + 1.29·5-s + 0.210·7-s − 0.738·8-s + 1.52·10-s + 0.259·11-s + 0.0518·13-s + 0.246·14-s − 1.23·16-s + 1.44·17-s + 0.880·19-s + 0.479·20-s + 0.303·22-s + 1.16·23-s + 0.688·25-s + 0.0607·26-s + 0.0778·28-s − 0.357·29-s − 1.45·31-s − 0.704·32-s + 1.69·34-s + 0.273·35-s − 0.586·37-s + 1.03·38-s − 0.959·40-s + 1.78·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81\)    =    \(3^{4}\)
Sign: $1$
Analytic conductor: \(62.2357\)
Root analytic conductor: \(7.88896\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(5.165282229\)
\(L(\frac12)\) \(\approx\) \(5.165282229\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 52.9T + 2.04e3T^{2} \)
5 \( 1 - 9.07e3T + 4.88e7T^{2} \)
7 \( 1 - 9.37e3T + 1.97e9T^{2} \)
11 \( 1 - 1.38e5T + 2.85e11T^{2} \)
13 \( 1 - 6.94e4T + 1.79e12T^{2} \)
17 \( 1 - 8.48e6T + 3.42e13T^{2} \)
19 \( 1 - 9.50e6T + 1.16e14T^{2} \)
23 \( 1 - 3.59e7T + 9.52e14T^{2} \)
29 \( 1 + 3.94e7T + 1.22e16T^{2} \)
31 \( 1 + 2.31e8T + 2.54e16T^{2} \)
37 \( 1 + 2.47e8T + 1.77e17T^{2} \)
41 \( 1 - 1.32e9T + 5.50e17T^{2} \)
43 \( 1 - 7.82e8T + 9.29e17T^{2} \)
47 \( 1 - 2.08e9T + 2.47e18T^{2} \)
53 \( 1 - 2.90e9T + 9.26e18T^{2} \)
59 \( 1 - 3.55e9T + 3.01e19T^{2} \)
61 \( 1 - 1.23e10T + 4.35e19T^{2} \)
67 \( 1 - 2.10e10T + 1.22e20T^{2} \)
71 \( 1 + 1.67e10T + 2.31e20T^{2} \)
73 \( 1 + 1.30e10T + 3.13e20T^{2} \)
79 \( 1 + 3.59e10T + 7.47e20T^{2} \)
83 \( 1 - 1.62e10T + 1.28e21T^{2} \)
89 \( 1 + 8.11e10T + 2.77e21T^{2} \)
97 \( 1 - 7.78e10T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.48037143101721623656254592075, −11.25336776372854731878794446791, −9.844752183853048116036256360374, −8.993639726993342058321552217956, −7.19788303973122626245859572550, −5.74706703022550194691466926835, −5.31853559914111977527011611004, −3.76749561626760771624520900090, −2.54968451536481786952512869678, −1.11000239915893148657753660411, 1.11000239915893148657753660411, 2.54968451536481786952512869678, 3.76749561626760771624520900090, 5.31853559914111977527011611004, 5.74706703022550194691466926835, 7.19788303973122626245859572550, 8.993639726993342058321552217956, 9.844752183853048116036256360374, 11.25336776372854731878794446791, 12.48037143101721623656254592075

Graph of the $Z$-function along the critical line