Properties

Label 2-3e3-9.2-c14-0-8
Degree $2$
Conductor $27$
Sign $0.000829 - 0.999i$
Analytic cond. $33.5688$
Root an. cond. $5.79386$
Motivic weight $14$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (193. + 111. i)2-s + (1.67e4 + 2.89e4i)4-s + (2.00e4 − 1.15e4i)5-s + (3.61e5 − 6.26e5i)7-s + 3.80e6i·8-s + 5.17e6·10-s + (2.12e7 + 1.22e7i)11-s + (5.32e7 + 9.21e7i)13-s + (1.39e8 − 8.06e7i)14-s + (−1.50e8 + 2.61e8i)16-s + 1.48e8i·17-s − 1.39e9·19-s + (6.70e8 + 3.87e8i)20-s + (2.73e9 + 4.74e9i)22-s + (4.34e9 − 2.51e9i)23-s + ⋯
L(s)  = 1  + (1.51 + 0.871i)2-s + (1.02 + 1.76i)4-s + (0.256 − 0.148i)5-s + (0.439 − 0.760i)7-s + 1.81i·8-s + 0.517·10-s + (1.09 + 0.629i)11-s + (0.848 + 1.46i)13-s + (1.32 − 0.765i)14-s + (−0.561 + 0.972i)16-s + 0.362i·17-s − 1.56·19-s + (0.523 + 0.302i)20-s + (1.09 + 1.90i)22-s + (1.27 − 0.737i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.000829 - 0.999i)\, \overline{\Lambda}(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & (0.000829 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.000829 - 0.999i$
Analytic conductor: \(33.5688\)
Root analytic conductor: \(5.79386\)
Motivic weight: \(14\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :7),\ 0.000829 - 0.999i)\)

Particular Values

\(L(\frac{15}{2})\) \(\approx\) \(5.652719356\)
\(L(\frac12)\) \(\approx\) \(5.652719356\)
\(L(8)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-193. - 111. i)T + (8.19e3 + 1.41e4i)T^{2} \)
5 \( 1 + (-2.00e4 + 1.15e4i)T + (3.05e9 - 5.28e9i)T^{2} \)
7 \( 1 + (-3.61e5 + 6.26e5i)T + (-3.39e11 - 5.87e11i)T^{2} \)
11 \( 1 + (-2.12e7 - 1.22e7i)T + (1.89e14 + 3.28e14i)T^{2} \)
13 \( 1 + (-5.32e7 - 9.21e7i)T + (-1.96e15 + 3.40e15i)T^{2} \)
17 \( 1 - 1.48e8iT - 1.68e17T^{2} \)
19 \( 1 + 1.39e9T + 7.99e17T^{2} \)
23 \( 1 + (-4.34e9 + 2.51e9i)T + (5.79e18 - 1.00e19i)T^{2} \)
29 \( 1 + (-1.35e9 - 7.80e8i)T + (1.48e20 + 2.57e20i)T^{2} \)
31 \( 1 + (3.09e9 + 5.35e9i)T + (-3.78e20 + 6.55e20i)T^{2} \)
37 \( 1 + 8.97e10T + 9.01e21T^{2} \)
41 \( 1 + (4.32e10 - 2.49e10i)T + (1.89e22 - 3.28e22i)T^{2} \)
43 \( 1 + (-1.16e11 + 2.01e11i)T + (-3.69e22 - 6.39e22i)T^{2} \)
47 \( 1 + (-3.23e11 - 1.86e11i)T + (1.28e23 + 2.22e23i)T^{2} \)
53 \( 1 + 6.91e11iT - 1.37e24T^{2} \)
59 \( 1 + (-1.64e10 + 9.47e9i)T + (3.09e24 - 5.36e24i)T^{2} \)
61 \( 1 + (7.88e11 - 1.36e12i)T + (-4.93e24 - 8.55e24i)T^{2} \)
67 \( 1 + (4.27e12 + 7.40e12i)T + (-1.83e25 + 3.18e25i)T^{2} \)
71 \( 1 + 1.08e13iT - 8.27e25T^{2} \)
73 \( 1 - 8.40e12T + 1.22e26T^{2} \)
79 \( 1 + (-7.09e11 + 1.22e12i)T + (-1.84e26 - 3.19e26i)T^{2} \)
83 \( 1 + (1.70e13 + 9.83e12i)T + (3.68e26 + 6.37e26i)T^{2} \)
89 \( 1 + 1.03e13iT - 1.95e27T^{2} \)
97 \( 1 + (-4.39e13 + 7.61e13i)T + (-3.26e27 - 5.65e27i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.34051443999413925400383016678, −13.49297711361317979450262334411, −12.33050055023492475990613702589, −11.02394682035649637128422755097, −8.869110096134515051888248679798, −7.11138503249532038811012131916, −6.29370627825219428908816101396, −4.59446113861362216703375167532, −3.86728516629453956025094304988, −1.70944526570634834014992396811, 1.18554047250004112640033991540, 2.58719763863260943136604769511, 3.79440576275935628464674966932, 5.32697924535893431277203357614, 6.28709217468612525760549751049, 8.678292644419885433201735057055, 10.55107457124594760836833925902, 11.47578789193623873036850471226, 12.59701396963037500275940968380, 13.62179862193246936374454734431

Graph of the $Z$-function along the critical line