Properties

Label 2-3e3-9.2-c14-0-7
Degree $2$
Conductor $27$
Sign $0.0777 + 0.996i$
Analytic cond. $33.5688$
Root an. cond. $5.79386$
Motivic weight $14$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−25.4 − 14.7i)2-s + (−7.75e3 − 1.34e4i)4-s + (−6.80e4 + 3.93e4i)5-s + (−5.76e5 + 9.98e5i)7-s + 9.38e5i·8-s + 2.31e6·10-s + (2.03e7 + 1.17e7i)11-s + (6.00e6 + 1.04e7i)13-s + (2.93e7 − 1.69e7i)14-s + (−1.13e8 + 1.96e8i)16-s − 5.59e8i·17-s − 4.54e8·19-s + (1.05e9 + 6.10e8i)20-s + (−3.44e8 − 5.97e8i)22-s + (−2.35e9 + 1.35e9i)23-s + ⋯
L(s)  = 1  + (−0.199 − 0.114i)2-s + (−0.473 − 0.820i)4-s + (−0.871 + 0.503i)5-s + (−0.700 + 1.21i)7-s + 0.447i·8-s + 0.231·10-s + (1.04 + 0.601i)11-s + (0.0957 + 0.165i)13-s + (0.278 − 0.160i)14-s + (−0.422 + 0.731i)16-s − 1.36i·17-s − 0.508·19-s + (0.825 + 0.476i)20-s + (−0.138 − 0.239i)22-s + (−0.690 + 0.398i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0777 + 0.996i)\, \overline{\Lambda}(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & (0.0777 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.0777 + 0.996i$
Analytic conductor: \(33.5688\)
Root analytic conductor: \(5.79386\)
Motivic weight: \(14\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :7),\ 0.0777 + 0.996i)\)

Particular Values

\(L(\frac{15}{2})\) \(\approx\) \(0.6027072418\)
\(L(\frac12)\) \(\approx\) \(0.6027072418\)
\(L(8)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (25.4 + 14.7i)T + (8.19e3 + 1.41e4i)T^{2} \)
5 \( 1 + (6.80e4 - 3.93e4i)T + (3.05e9 - 5.28e9i)T^{2} \)
7 \( 1 + (5.76e5 - 9.98e5i)T + (-3.39e11 - 5.87e11i)T^{2} \)
11 \( 1 + (-2.03e7 - 1.17e7i)T + (1.89e14 + 3.28e14i)T^{2} \)
13 \( 1 + (-6.00e6 - 1.04e7i)T + (-1.96e15 + 3.40e15i)T^{2} \)
17 \( 1 + 5.59e8iT - 1.68e17T^{2} \)
19 \( 1 + 4.54e8T + 7.99e17T^{2} \)
23 \( 1 + (2.35e9 - 1.35e9i)T + (5.79e18 - 1.00e19i)T^{2} \)
29 \( 1 + (-4.85e9 - 2.80e9i)T + (1.48e20 + 2.57e20i)T^{2} \)
31 \( 1 + (1.92e10 + 3.33e10i)T + (-3.78e20 + 6.55e20i)T^{2} \)
37 \( 1 + 1.53e11T + 9.01e21T^{2} \)
41 \( 1 + (-1.37e11 + 7.94e10i)T + (1.89e22 - 3.28e22i)T^{2} \)
43 \( 1 + (-2.50e11 + 4.33e11i)T + (-3.69e22 - 6.39e22i)T^{2} \)
47 \( 1 + (-2.81e11 - 1.62e11i)T + (1.28e23 + 2.22e23i)T^{2} \)
53 \( 1 + 3.38e11iT - 1.37e24T^{2} \)
59 \( 1 + (-4.28e12 + 2.47e12i)T + (3.09e24 - 5.36e24i)T^{2} \)
61 \( 1 + (2.12e11 - 3.67e11i)T + (-4.93e24 - 8.55e24i)T^{2} \)
67 \( 1 + (-1.23e12 - 2.14e12i)T + (-1.83e25 + 3.18e25i)T^{2} \)
71 \( 1 - 7.44e12iT - 8.27e25T^{2} \)
73 \( 1 - 4.08e12T + 1.22e26T^{2} \)
79 \( 1 + (-1.40e12 + 2.43e12i)T + (-1.84e26 - 3.19e26i)T^{2} \)
83 \( 1 + (-1.18e13 - 6.81e12i)T + (3.68e26 + 6.37e26i)T^{2} \)
89 \( 1 - 7.66e12iT - 1.95e27T^{2} \)
97 \( 1 + (-2.12e13 + 3.68e13i)T + (-3.26e27 - 5.65e27i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02039974416053566257479320266, −12.29778528001069441888962982210, −11.31777016343891391630022705632, −9.721237024329404044686978344401, −8.860790468741762133061059117458, −6.99267134773735265820719315946, −5.59357827345739772914000079928, −3.91994762490233363044102781065, −2.16801873048279753910257409358, −0.27640027030198872820998667638, 0.866925979374322302901614666318, 3.61662266449338636820922191231, 4.16852386542840118489968978630, 6.58711527209908350457274443741, 7.926506259544264628270360978226, 8.907598467227143027966700019965, 10.51377819401301128795512850685, 12.10100943027843809398809108033, 13.00484798019697668072386026790, 14.23292954083018828986823514797

Graph of the $Z$-function along the critical line