Properties

Label 2-3e3-9.2-c14-0-6
Degree $2$
Conductor $27$
Sign $0.100 + 0.994i$
Analytic cond. $33.5688$
Root an. cond. $5.79386$
Motivic weight $14$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−209. − 121. i)2-s + (2.11e4 + 3.66e4i)4-s + (6.97e4 − 4.02e4i)5-s + (−3.76e5 + 6.51e5i)7-s − 6.26e6i·8-s − 1.95e7·10-s + (−1.49e7 − 8.64e6i)11-s + (−2.09e7 − 3.63e7i)13-s + (1.57e8 − 9.11e7i)14-s + (−4.12e8 + 7.14e8i)16-s + 4.35e8i·17-s + 9.97e8·19-s + (2.94e9 + 1.70e9i)20-s + (2.09e9 + 3.62e9i)22-s + (1.81e9 − 1.04e9i)23-s + ⋯
L(s)  = 1  + (−1.63 − 0.946i)2-s + (1.28 + 2.23i)4-s + (0.892 − 0.515i)5-s + (−0.457 + 0.791i)7-s − 2.98i·8-s − 1.95·10-s + (−0.768 − 0.443i)11-s + (−0.334 − 0.579i)13-s + (1.49 − 0.864i)14-s + (−1.53 + 2.66i)16-s + 1.06i·17-s + 1.11·19-s + (2.30 + 1.32i)20-s + (0.839 + 1.45i)22-s + (0.532 − 0.307i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.100 + 0.994i)\, \overline{\Lambda}(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & (0.100 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.100 + 0.994i$
Analytic conductor: \(33.5688\)
Root analytic conductor: \(5.79386\)
Motivic weight: \(14\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (8, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :7),\ 0.100 + 0.994i)\)

Particular Values

\(L(\frac{15}{2})\) \(\approx\) \(0.8276919398\)
\(L(\frac12)\) \(\approx\) \(0.8276919398\)
\(L(8)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (209. + 121. i)T + (8.19e3 + 1.41e4i)T^{2} \)
5 \( 1 + (-6.97e4 + 4.02e4i)T + (3.05e9 - 5.28e9i)T^{2} \)
7 \( 1 + (3.76e5 - 6.51e5i)T + (-3.39e11 - 5.87e11i)T^{2} \)
11 \( 1 + (1.49e7 + 8.64e6i)T + (1.89e14 + 3.28e14i)T^{2} \)
13 \( 1 + (2.09e7 + 3.63e7i)T + (-1.96e15 + 3.40e15i)T^{2} \)
17 \( 1 - 4.35e8iT - 1.68e17T^{2} \)
19 \( 1 - 9.97e8T + 7.99e17T^{2} \)
23 \( 1 + (-1.81e9 + 1.04e9i)T + (5.79e18 - 1.00e19i)T^{2} \)
29 \( 1 + (2.31e10 + 1.33e10i)T + (1.48e20 + 2.57e20i)T^{2} \)
31 \( 1 + (-1.04e10 - 1.80e10i)T + (-3.78e20 + 6.55e20i)T^{2} \)
37 \( 1 - 5.64e10T + 9.01e21T^{2} \)
41 \( 1 + (-1.74e11 + 1.00e11i)T + (1.89e22 - 3.28e22i)T^{2} \)
43 \( 1 + (-2.99e10 + 5.19e10i)T + (-3.69e22 - 6.39e22i)T^{2} \)
47 \( 1 + (-1.62e11 - 9.38e10i)T + (1.28e23 + 2.22e23i)T^{2} \)
53 \( 1 - 5.89e11iT - 1.37e24T^{2} \)
59 \( 1 + (-2.04e12 + 1.17e12i)T + (3.09e24 - 5.36e24i)T^{2} \)
61 \( 1 + (2.24e11 - 3.88e11i)T + (-4.93e24 - 8.55e24i)T^{2} \)
67 \( 1 + (3.74e12 + 6.49e12i)T + (-1.83e25 + 3.18e25i)T^{2} \)
71 \( 1 + 4.02e12iT - 8.27e25T^{2} \)
73 \( 1 - 1.50e13T + 1.22e26T^{2} \)
79 \( 1 + (-1.58e13 + 2.73e13i)T + (-1.84e26 - 3.19e26i)T^{2} \)
83 \( 1 + (8.14e12 + 4.69e12i)T + (3.68e26 + 6.37e26i)T^{2} \)
89 \( 1 + 5.29e13iT - 1.95e27T^{2} \)
97 \( 1 + (-3.97e12 + 6.87e12i)T + (-3.26e27 - 5.65e27i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17408914635938952564524599827, −12.31941123557368922892175737417, −10.87579053166917917855774746381, −9.767992343488984155447565237912, −8.950296344102516013579588083643, −7.73538559983677565618639391300, −5.77905566508961570756227482275, −3.06938029580611552386947681145, −1.95586704562387199769422750398, −0.59355317440068171987023550136, 0.845110597565759465098088104554, 2.37685653140822671533450315622, 5.44054942389345045899776817715, 6.84310589771455407500688301306, 7.56566640307604592974976765289, 9.429171150475908231964135836536, 9.940429007530341856833900640093, 11.15606274152806325794135471803, 13.58581828877874040952160931336, 14.70583039130873259369596499334

Graph of the $Z$-function along the critical line