L(s) = 1 | − 29.3i·2-s − 608·4-s + 823. i·5-s + 1.96e3·7-s + 1.03e4i·8-s + 2.41e4·10-s + 1.25e4i·11-s − 4.55e4·13-s − 5.78e4i·14-s + 1.48e5·16-s + 5.96e4i·17-s + 1.52e5·19-s − 5.00e5i·20-s + 3.69e5·22-s + 1.31e5i·23-s + ⋯ |
L(s) = 1 | − 1.83i·2-s − 2.37·4-s + 1.31i·5-s + 0.819·7-s + 2.52i·8-s + 2.41·10-s + 0.859i·11-s − 1.59·13-s − 1.50i·14-s + 2.26·16-s + 0.713i·17-s + 1.16·19-s − 3.12i·20-s + 1.57·22-s + 0.469i·23-s + ⋯ |
Λ(s)=(=(27s/2ΓC(s)L(s)Λ(9−s)
Λ(s)=(=(27s/2ΓC(s+4)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
27
= 33
|
Sign: |
1
|
Analytic conductor: |
10.9992 |
Root analytic conductor: |
3.31650 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ27(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 27, ( :4), 1)
|
Particular Values
L(29) |
≈ |
1.10612 |
L(21) |
≈ |
1.10612 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+29.3iT−256T2 |
| 5 | 1−823.iT−3.90e5T2 |
| 7 | 1−1.96e3T+5.76e6T2 |
| 11 | 1−1.25e4iT−2.14e8T2 |
| 13 | 1+4.55e4T+8.15e8T2 |
| 17 | 1−5.96e4iT−6.97e9T2 |
| 19 | 1−1.52e5T+1.69e10T2 |
| 23 | 1−1.31e5iT−7.83e10T2 |
| 29 | 1−5.88e5iT−5.00e11T2 |
| 31 | 1+1.64e5T+8.52e11T2 |
| 37 | 1+6.63e5T+3.51e12T2 |
| 41 | 1−9.38e5iT−7.98e12T2 |
| 43 | 1−5.75e5T+1.16e13T2 |
| 47 | 1−9.23e6iT−2.38e13T2 |
| 53 | 1+1.03e7iT−6.22e13T2 |
| 59 | 1−5.03e6iT−1.46e14T2 |
| 61 | 1+1.92e7T+1.91e14T2 |
| 67 | 1+5.98e5T+4.06e14T2 |
| 71 | 1+2.92e7iT−6.45e14T2 |
| 73 | 1−1.28e7T+8.06e14T2 |
| 79 | 1+2.35e7T+1.51e15T2 |
| 83 | 1+3.34e7iT−2.25e15T2 |
| 89 | 1−2.82e7iT−3.93e15T2 |
| 97 | 1−1.36e8T+7.83e15T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.85796048591503592714676740965, −14.14734310171420113978962528196, −12.54063389911506352363865170605, −11.52604338076039343415075765899, −10.51158709903341614490408552913, −9.560412922687546050177047019007, −7.52063485810322983908469228758, −4.80754363752921529066023694918, −3.08754576563721815408088786126, −1.80398497337955035900751147504,
0.52040295694008958693358612029, 4.68732513555273015926947567644, 5.46432275902876930682036652135, 7.38257311318120953641060315951, 8.424502580573556382771707379568, 9.496711958628782159689328433733, 12.06162512665889783105698828169, 13.52445252718662654061100376604, 14.44884294482851358939031487818, 15.71400430337188836957098893216