Properties

Label 2-3e3-3.2-c6-0-3
Degree $2$
Conductor $27$
Sign $1$
Analytic cond. $6.21146$
Root an. cond. $2.49228$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6i·2-s + 28·4-s + 240i·5-s + 299·7-s − 552i·8-s + 1.44e3·10-s + 624i·11-s + 2.49e3·13-s − 1.79e3i·14-s − 1.52e3·16-s − 1.87e3i·17-s − 2.50e3·19-s + 6.72e3i·20-s + 3.74e3·22-s + 1.43e4i·23-s + ⋯
L(s)  = 1  − 0.750i·2-s + 0.437·4-s + 1.91i·5-s + 0.871·7-s − 1.07i·8-s + 1.43·10-s + 0.468i·11-s + 1.13·13-s − 0.653i·14-s − 0.371·16-s − 0.381i·17-s − 0.365·19-s + 0.839i·20-s + 0.351·22-s + 1.17i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $1$
Analytic conductor: \(6.21146\)
Root analytic conductor: \(2.49228\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :3),\ 1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.96992\)
\(L(\frac12)\) \(\approx\) \(1.96992\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 6iT - 64T^{2} \)
5 \( 1 - 240iT - 1.56e4T^{2} \)
7 \( 1 - 299T + 1.17e5T^{2} \)
11 \( 1 - 624iT - 1.77e6T^{2} \)
13 \( 1 - 2.49e3T + 4.82e6T^{2} \)
17 \( 1 + 1.87e3iT - 2.41e7T^{2} \)
19 \( 1 + 2.50e3T + 4.70e7T^{2} \)
23 \( 1 - 1.43e4iT - 1.48e8T^{2} \)
29 \( 1 + 2.37e4iT - 5.94e8T^{2} \)
31 \( 1 - 5.33e3T + 8.87e8T^{2} \)
37 \( 1 - 3.25e4T + 2.56e9T^{2} \)
41 \( 1 + 6.61e4iT - 4.75e9T^{2} \)
43 \( 1 + 7.06e4T + 6.32e9T^{2} \)
47 \( 1 + 3.98e3iT - 1.07e10T^{2} \)
53 \( 1 + 1.90e5iT - 2.21e10T^{2} \)
59 \( 1 + 2.37e5iT - 4.21e10T^{2} \)
61 \( 1 + 6.18e4T + 5.15e10T^{2} \)
67 \( 1 + 4.30e5T + 9.04e10T^{2} \)
71 \( 1 - 2.51e5iT - 1.28e11T^{2} \)
73 \( 1 - 2.51e5T + 1.51e11T^{2} \)
79 \( 1 - 6.60e5T + 2.43e11T^{2} \)
83 \( 1 + 7.97e5iT - 3.26e11T^{2} \)
89 \( 1 - 2.70e5iT - 4.96e11T^{2} \)
97 \( 1 - 2.20e5T + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.67967349470792618529683367992, −14.83552838579428360049450296384, −13.57293222126820040829193728746, −11.62369540682971623391568410023, −11.05625979805148337460201676372, −9.990486139180967140208432314978, −7.60224623730087719735163842154, −6.36916925635655843099364052175, −3.53858300520273510886731839187, −2.03232292531174936133167360743, 1.37340758254179577886894900599, 4.68841056120705700074402565526, 6.00095655174430841648749994050, 8.111968754919570520732082179980, 8.733367916535631938827728697853, 11.01828444618274095997147346912, 12.29168464788704310873779048123, 13.60520871549574784535648973829, 15.05649146261494812633409485461, 16.32901971440025001174604379715

Graph of the $Z$-function along the critical line