L(s) = 1 | − 6i·2-s + 28·4-s + 240i·5-s + 299·7-s − 552i·8-s + 1.44e3·10-s + 624i·11-s + 2.49e3·13-s − 1.79e3i·14-s − 1.52e3·16-s − 1.87e3i·17-s − 2.50e3·19-s + 6.72e3i·20-s + 3.74e3·22-s + 1.43e4i·23-s + ⋯ |
L(s) = 1 | − 0.750i·2-s + 0.437·4-s + 1.91i·5-s + 0.871·7-s − 1.07i·8-s + 1.43·10-s + 0.468i·11-s + 1.13·13-s − 0.653i·14-s − 0.371·16-s − 0.381i·17-s − 0.365·19-s + 0.839i·20-s + 0.351·22-s + 1.17i·23-s + ⋯ |
Λ(s)=(=(27s/2ΓC(s)L(s)Λ(7−s)
Λ(s)=(=(27s/2ΓC(s+3)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
27
= 33
|
Sign: |
1
|
Analytic conductor: |
6.21146 |
Root analytic conductor: |
2.49228 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ27(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 27, ( :3), 1)
|
Particular Values
L(27) |
≈ |
1.96992 |
L(21) |
≈ |
1.96992 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+6iT−64T2 |
| 5 | 1−240iT−1.56e4T2 |
| 7 | 1−299T+1.17e5T2 |
| 11 | 1−624iT−1.77e6T2 |
| 13 | 1−2.49e3T+4.82e6T2 |
| 17 | 1+1.87e3iT−2.41e7T2 |
| 19 | 1+2.50e3T+4.70e7T2 |
| 23 | 1−1.43e4iT−1.48e8T2 |
| 29 | 1+2.37e4iT−5.94e8T2 |
| 31 | 1−5.33e3T+8.87e8T2 |
| 37 | 1−3.25e4T+2.56e9T2 |
| 41 | 1+6.61e4iT−4.75e9T2 |
| 43 | 1+7.06e4T+6.32e9T2 |
| 47 | 1+3.98e3iT−1.07e10T2 |
| 53 | 1+1.90e5iT−2.21e10T2 |
| 59 | 1+2.37e5iT−4.21e10T2 |
| 61 | 1+6.18e4T+5.15e10T2 |
| 67 | 1+4.30e5T+9.04e10T2 |
| 71 | 1−2.51e5iT−1.28e11T2 |
| 73 | 1−2.51e5T+1.51e11T2 |
| 79 | 1−6.60e5T+2.43e11T2 |
| 83 | 1+7.97e5iT−3.26e11T2 |
| 89 | 1−2.70e5iT−4.96e11T2 |
| 97 | 1−2.20e5T+8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.67967349470792618529683367992, −14.83552838579428360049450296384, −13.57293222126820040829193728746, −11.62369540682971623391568410023, −11.05625979805148337460201676372, −9.990486139180967140208432314978, −7.60224623730087719735163842154, −6.36916925635655843099364052175, −3.53858300520273510886731839187, −2.03232292531174936133167360743,
1.37340758254179577886894900599, 4.68841056120705700074402565526, 6.00095655174430841648749994050, 8.111968754919570520732082179980, 8.733367916535631938827728697853, 11.01828444618274095997147346912, 12.29168464788704310873779048123, 13.60520871549574784535648973829, 15.05649146261494812633409485461, 16.32901971440025001174604379715