| L(s) = 1 | − 185. i·2-s − 1.79e4·4-s − 1.15e5i·5-s − 3.69e5·7-s + 2.81e5i·8-s − 2.14e7·10-s − 3.69e7i·11-s + 6.11e7·13-s + 6.83e7i·14-s − 2.41e8·16-s − 2.72e8i·17-s − 6.92e8·19-s + 2.07e9i·20-s − 6.83e9·22-s + 1.35e9i·23-s + ⋯ |
| L(s) = 1 | − 1.44i·2-s − 1.09·4-s − 1.47i·5-s − 0.448·7-s + 0.134i·8-s − 2.14·10-s − 1.89i·11-s + 0.975·13-s + 0.648i·14-s − 0.898·16-s − 0.664i·17-s − 0.775·19-s + 1.61i·20-s − 2.74·22-s + 0.398i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{15}{2})\) |
\(\approx\) |
\(1.446993413\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.446993413\) |
| \(L(8)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| good | 2 | \( 1 + 185. iT - 1.63e4T^{2} \) |
| 5 | \( 1 + 1.15e5iT - 6.10e9T^{2} \) |
| 7 | \( 1 + 3.69e5T + 6.78e11T^{2} \) |
| 11 | \( 1 + 3.69e7iT - 3.79e14T^{2} \) |
| 13 | \( 1 - 6.11e7T + 3.93e15T^{2} \) |
| 17 | \( 1 + 2.72e8iT - 1.68e17T^{2} \) |
| 19 | \( 1 + 6.92e8T + 7.99e17T^{2} \) |
| 23 | \( 1 - 1.35e9iT - 1.15e19T^{2} \) |
| 29 | \( 1 - 9.06e9iT - 2.97e20T^{2} \) |
| 31 | \( 1 - 1.67e10T + 7.56e20T^{2} \) |
| 37 | \( 1 - 1.75e11T + 9.01e21T^{2} \) |
| 41 | \( 1 - 1.20e11iT - 3.79e22T^{2} \) |
| 43 | \( 1 - 3.35e11T + 7.38e22T^{2} \) |
| 47 | \( 1 + 8.58e11iT - 2.56e23T^{2} \) |
| 53 | \( 1 - 2.24e12iT - 1.37e24T^{2} \) |
| 59 | \( 1 - 2.61e12iT - 6.19e24T^{2} \) |
| 61 | \( 1 - 1.86e12T + 9.87e24T^{2} \) |
| 67 | \( 1 + 5.44e12T + 3.67e25T^{2} \) |
| 71 | \( 1 + 6.80e12iT - 8.27e25T^{2} \) |
| 73 | \( 1 - 6.05e12T + 1.22e26T^{2} \) |
| 79 | \( 1 + 1.60e13T + 3.68e26T^{2} \) |
| 83 | \( 1 + 2.87e13iT - 7.36e26T^{2} \) |
| 89 | \( 1 + 3.16e13iT - 1.95e27T^{2} \) |
| 97 | \( 1 + 1.09e14T + 6.52e27T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.03964459788278042298510036346, −11.82058208329477516416629898961, −10.83702595067159411812936563424, −9.296769104815267501901474974941, −8.486232685125330655220077425015, −5.92902487965472995038281541162, −4.26361997311085343510539433112, −3.00197724856828811151465210332, −1.20258580936126269035939113281, −0.48690579782897725405669055107,
2.35204006092108059810810320010, 4.24138880662367272586306045439, 6.17385784515120228842873929778, 6.83818535013213989447587070938, 7.981156649797787977101877673454, 9.733830033921109569387928374266, 11.03508994485358839197220136112, 12.89942971700540515365907856219, 14.40029830107221768700711672774, 15.02996484435617994416818835821