Properties

Label 2-3e3-3.2-c14-0-12
Degree $2$
Conductor $27$
Sign $i$
Analytic cond. $33.5688$
Root an. cond. $5.79386$
Motivic weight $14$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 123. i·2-s + 1.25e3·4-s − 4.86e4i·5-s + 1.10e6·7-s − 2.16e6i·8-s − 5.98e6·10-s + 2.78e7i·11-s + 8.92e7·13-s − 1.35e8i·14-s − 2.46e8·16-s + 1.83e8i·17-s + 1.31e9·19-s − 6.09e7i·20-s + 3.42e9·22-s + 9.96e8i·23-s + ⋯
L(s)  = 1  − 0.961i·2-s + 0.0764·4-s − 0.622i·5-s + 1.34·7-s − 1.03i·8-s − 0.598·10-s + 1.42i·11-s + 1.42·13-s − 1.28i·14-s − 0.917·16-s + 0.446i·17-s + 1.47·19-s − 0.0476i·20-s + 1.37·22-s + 0.292i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $i$
Analytic conductor: \(33.5688\)
Root analytic conductor: \(5.79386\)
Motivic weight: \(14\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :7),\ i)\)

Particular Values

\(L(\frac{15}{2})\) \(\approx\) \(2.982647934\)
\(L(\frac12)\) \(\approx\) \(2.982647934\)
\(L(8)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + 123. iT - 1.63e4T^{2} \)
5 \( 1 + 4.86e4iT - 6.10e9T^{2} \)
7 \( 1 - 1.10e6T + 6.78e11T^{2} \)
11 \( 1 - 2.78e7iT - 3.79e14T^{2} \)
13 \( 1 - 8.92e7T + 3.93e15T^{2} \)
17 \( 1 - 1.83e8iT - 1.68e17T^{2} \)
19 \( 1 - 1.31e9T + 7.99e17T^{2} \)
23 \( 1 - 9.96e8iT - 1.15e19T^{2} \)
29 \( 1 - 4.05e8iT - 2.97e20T^{2} \)
31 \( 1 + 1.31e10T + 7.56e20T^{2} \)
37 \( 1 + 8.42e10T + 9.01e21T^{2} \)
41 \( 1 + 2.20e11iT - 3.79e22T^{2} \)
43 \( 1 + 2.37e11T + 7.38e22T^{2} \)
47 \( 1 + 8.39e11iT - 2.56e23T^{2} \)
53 \( 1 + 1.03e12iT - 1.37e24T^{2} \)
59 \( 1 - 3.62e12iT - 6.19e24T^{2} \)
61 \( 1 - 3.70e12T + 9.87e24T^{2} \)
67 \( 1 + 6.86e12T + 3.67e25T^{2} \)
71 \( 1 - 8.81e12iT - 8.27e25T^{2} \)
73 \( 1 - 1.29e13T + 1.22e26T^{2} \)
79 \( 1 + 1.51e13T + 3.68e26T^{2} \)
83 \( 1 + 3.80e13iT - 7.36e26T^{2} \)
89 \( 1 - 4.75e13iT - 1.95e27T^{2} \)
97 \( 1 - 6.50e13T + 6.52e27T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46543265036270584044893990800, −12.23346692809295117424658226097, −11.36422474795303798730395549887, −10.18985892179214661065663668597, −8.708441828856820627623940785608, −7.20555337008872606633316183667, −5.16503495023528784552035737619, −3.77440219518191777119026560963, −1.87626653461201608758496140538, −1.14638841442017867707447375285, 1.28176801836597963345768035809, 3.12736131851130620561858812461, 5.19839700243101296122596989087, 6.34587462384121071781562762854, 7.72752781270692661246006518383, 8.660576882917516315506671340619, 10.98141797340259129990110903167, 11.42919617763991436745559380993, 13.80584960551579192097333195813, 14.41120885561103364061740275248

Graph of the $Z$-function along the critical line