Properties

Label 2-3e3-27.25-c5-0-13
Degree $2$
Conductor $27$
Sign $-0.965 - 0.260i$
Analytic cond. $4.33036$
Root an. cond. $2.08095$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.40 − 7.95i)2-s + (−9.89 − 12.0i)3-s + (−31.2 − 11.3i)4-s + (15.2 − 12.7i)5-s + (−109. + 61.8i)6-s + (−70.6 + 25.7i)7-s + (−5.20 + 9.00i)8-s + (−47.1 + 238. i)9-s + (−80.3 − 139. i)10-s + (144. + 121. i)11-s + (172. + 489. i)12-s + (−145. − 824. i)13-s + (105. + 598. i)14-s + (−304. − 56.9i)15-s + (−751. − 630. i)16-s + (−465. − 805. i)17-s + ⋯
L(s)  = 1  + (0.248 − 1.40i)2-s + (−0.634 − 0.772i)3-s + (−0.977 − 0.355i)4-s + (0.272 − 0.228i)5-s + (−1.24 + 0.701i)6-s + (−0.545 + 0.198i)7-s + (−0.0287 + 0.0497i)8-s + (−0.194 + 0.980i)9-s + (−0.253 − 0.439i)10-s + (0.360 + 0.302i)11-s + (0.345 + 0.981i)12-s + (−0.238 − 1.35i)13-s + (0.143 + 0.816i)14-s + (−0.349 − 0.0653i)15-s + (−0.733 − 0.615i)16-s + (−0.390 − 0.676i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.965 - 0.260i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.965 - 0.260i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-0.965 - 0.260i$
Analytic conductor: \(4.33036\)
Root analytic conductor: \(2.08095\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :5/2),\ -0.965 - 0.260i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.159772 + 1.20341i\)
\(L(\frac12)\) \(\approx\) \(0.159772 + 1.20341i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (9.89 + 12.0i)T \)
good2 \( 1 + (-1.40 + 7.95i)T + (-30.0 - 10.9i)T^{2} \)
5 \( 1 + (-15.2 + 12.7i)T + (542. - 3.07e3i)T^{2} \)
7 \( 1 + (70.6 - 25.7i)T + (1.28e4 - 1.08e4i)T^{2} \)
11 \( 1 + (-144. - 121. i)T + (2.79e4 + 1.58e5i)T^{2} \)
13 \( 1 + (145. + 824. i)T + (-3.48e5 + 1.26e5i)T^{2} \)
17 \( 1 + (465. + 805. i)T + (-7.09e5 + 1.22e6i)T^{2} \)
19 \( 1 + (-1.07e3 + 1.86e3i)T + (-1.23e6 - 2.14e6i)T^{2} \)
23 \( 1 + (-2.22e3 - 809. i)T + (4.93e6 + 4.13e6i)T^{2} \)
29 \( 1 + (17.6 - 100. i)T + (-1.92e7 - 7.01e6i)T^{2} \)
31 \( 1 + (-5.47e3 - 1.99e3i)T + (2.19e7 + 1.84e7i)T^{2} \)
37 \( 1 + (5.39e3 + 9.33e3i)T + (-3.46e7 + 6.00e7i)T^{2} \)
41 \( 1 + (-2.49e3 - 1.41e4i)T + (-1.08e8 + 3.96e7i)T^{2} \)
43 \( 1 + (-512. - 430. i)T + (2.55e7 + 1.44e8i)T^{2} \)
47 \( 1 + (-2.67e4 + 9.72e3i)T + (1.75e8 - 1.47e8i)T^{2} \)
53 \( 1 - 2.53e4T + 4.18e8T^{2} \)
59 \( 1 + (-1.17e4 + 9.86e3i)T + (1.24e8 - 7.04e8i)T^{2} \)
61 \( 1 + (8.42e3 - 3.06e3i)T + (6.46e8 - 5.42e8i)T^{2} \)
67 \( 1 + (1.06e4 + 6.03e4i)T + (-1.26e9 + 4.61e8i)T^{2} \)
71 \( 1 + (2.55e3 + 4.42e3i)T + (-9.02e8 + 1.56e9i)T^{2} \)
73 \( 1 + (1.76e4 - 3.06e4i)T + (-1.03e9 - 1.79e9i)T^{2} \)
79 \( 1 + (9.55e3 - 5.41e4i)T + (-2.89e9 - 1.05e9i)T^{2} \)
83 \( 1 + (1.65e4 - 9.41e4i)T + (-3.70e9 - 1.34e9i)T^{2} \)
89 \( 1 + (-5.03e4 + 8.72e4i)T + (-2.79e9 - 4.83e9i)T^{2} \)
97 \( 1 + (-7.17e4 - 6.01e4i)T + (1.49e9 + 8.45e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.69390649086353535208194048877, −13.56951924383340823388802501720, −12.87010421640150371785501693875, −11.87010177456047201943859381021, −10.76920411137447808310714224892, −9.387825351335057949734329048542, −7.11555903847716050315409842943, −5.17656129445870954518977304667, −2.75675486278850889703033446820, −0.836983105702390771135146287759, 4.24236125513819043833537511220, 5.90014861810763475337106964660, 6.84803692623348462588583237011, 8.861722126209150343418352704607, 10.31262121402878305510657015712, 11.88839315133104622691665415972, 13.78148127034198733901275318246, 14.74591984342529130076552651929, 15.92333811406181578536407326762, 16.68988409026364797424840514824

Graph of the $Z$-function along the critical line