Properties

Label 2-3e3-27.22-c1-0-1
Degree $2$
Conductor $27$
Sign $0.999 + 0.0444i$
Analytic cond. $0.215596$
Root an. cond. $0.464323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.318 + 0.267i)2-s + (0.159 − 1.72i)3-s + (−0.317 + 1.79i)4-s + (−2.08 + 0.757i)5-s + (0.409 + 0.591i)6-s + (−0.229 − 1.29i)7-s + (−0.795 − 1.37i)8-s + (−2.94 − 0.551i)9-s + (0.460 − 0.797i)10-s + (4.90 + 1.78i)11-s + (3.05 + 0.834i)12-s + (−0.0138 − 0.0116i)13-s + (0.419 + 0.352i)14-s + (0.974 + 3.71i)15-s + (−2.81 − 1.02i)16-s + (1.56 − 2.71i)17-s + ⋯
L(s)  = 1  + (−0.225 + 0.188i)2-s + (0.0922 − 0.995i)3-s + (−0.158 + 0.899i)4-s + (−0.930 + 0.338i)5-s + (0.167 + 0.241i)6-s + (−0.0866 − 0.491i)7-s + (−0.281 − 0.486i)8-s + (−0.982 − 0.183i)9-s + (0.145 − 0.252i)10-s + (1.47 + 0.537i)11-s + (0.881 + 0.241i)12-s + (−0.00383 − 0.00321i)13-s + (0.112 + 0.0941i)14-s + (0.251 + 0.958i)15-s + (−0.703 − 0.256i)16-s + (0.379 − 0.658i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0444i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0444i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.999 + 0.0444i$
Analytic conductor: \(0.215596\)
Root analytic conductor: \(0.464323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (22, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :1/2),\ 0.999 + 0.0444i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.567882 - 0.0126348i\)
\(L(\frac12)\) \(\approx\) \(0.567882 - 0.0126348i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.159 + 1.72i)T \)
good2 \( 1 + (0.318 - 0.267i)T + (0.347 - 1.96i)T^{2} \)
5 \( 1 + (2.08 - 0.757i)T + (3.83 - 3.21i)T^{2} \)
7 \( 1 + (0.229 + 1.29i)T + (-6.57 + 2.39i)T^{2} \)
11 \( 1 + (-4.90 - 1.78i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (0.0138 + 0.0116i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (-1.56 + 2.71i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.208 + 0.361i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.179 - 1.01i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (5.98 - 5.01i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.647 + 3.67i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (2.21 - 3.83i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (2.81 + 2.36i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (-7.80 - 2.84i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (1.23 + 6.99i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 + 1.30T + 53T^{2} \)
59 \( 1 + (-3.47 + 1.26i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (-1.20 - 6.80i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (8.44 + 7.08i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (-3.04 + 5.26i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-0.273 - 0.473i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-0.374 + 0.314i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-3.53 + 2.96i)T + (14.4 - 81.7i)T^{2} \)
89 \( 1 + (-1.68 - 2.92i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (9.34 + 3.40i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.40248005733723778142719794333, −16.54837303970361264501705096268, −14.91361505773453857725970005165, −13.60434301001082601018435284033, −12.26240124723143498264230542380, −11.51306656287596393333514178044, −9.110140218839915662927826793138, −7.64598089807649843595038236107, −6.89586373664414977827306987784, −3.68771838975598762116168332143, 4.07348243576516157456316411183, 5.86274127825850910906463735296, 8.534705305699404093866563920772, 9.505094398920335895429043131524, 10.96416714558952203217923774030, 11.97756399136526140300114527250, 14.18179142293265801263626882678, 15.06511953194407883224456892518, 16.05964725446672923597591682014, 17.26757666820539469153793665031

Graph of the $Z$-function along the critical line