Properties

Label 2-3e2-9.5-c18-0-8
Degree $2$
Conductor $9$
Sign $0.393 - 0.919i$
Analytic cond. $18.4847$
Root an. cond. $4.29938$
Motivic weight $18$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (336. − 194. i)2-s + (1.67e4 + 1.03e4i)3-s + (−5.53e4 + 9.59e4i)4-s + (2.58e6 + 1.49e6i)5-s + (7.65e6 + 2.11e5i)6-s + (−1.88e7 − 3.26e7i)7-s + 1.45e8i·8-s + (1.74e8 + 3.45e8i)9-s + 1.15e9·10-s + (−2.85e9 + 1.64e9i)11-s + (−1.91e9 + 1.03e9i)12-s + (1.41e9 − 2.45e9i)13-s + (−1.26e10 − 7.32e9i)14-s + (2.79e10 + 5.15e10i)15-s + (1.37e10 + 2.37e10i)16-s − 3.48e10i·17-s + ⋯
L(s)  = 1  + (0.658 − 0.379i)2-s + (0.851 + 0.523i)3-s + (−0.211 + 0.365i)4-s + (1.32 + 0.762i)5-s + (0.759 + 0.0209i)6-s + (−0.466 − 0.807i)7-s + 1.08i·8-s + (0.451 + 0.892i)9-s + 1.15·10-s + (−1.21 + 0.698i)11-s + (−0.371 + 0.201i)12-s + (0.133 − 0.231i)13-s + (−0.614 − 0.354i)14-s + (0.726 + 1.34i)15-s + (0.199 + 0.345i)16-s − 0.293i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.393 - 0.919i)\, \overline{\Lambda}(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & (0.393 - 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $0.393 - 0.919i$
Analytic conductor: \(18.4847\)
Root analytic conductor: \(4.29938\)
Motivic weight: \(18\)
Rational: no
Arithmetic: yes
Character: $\chi_{9} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :9),\ 0.393 - 0.919i)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(3.06307 + 2.02112i\)
\(L(\frac12)\) \(\approx\) \(3.06307 + 2.02112i\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.67e4 - 1.03e4i)T \)
good2 \( 1 + (-336. + 194. i)T + (1.31e5 - 2.27e5i)T^{2} \)
5 \( 1 + (-2.58e6 - 1.49e6i)T + (1.90e12 + 3.30e12i)T^{2} \)
7 \( 1 + (1.88e7 + 3.26e7i)T + (-8.14e14 + 1.41e15i)T^{2} \)
11 \( 1 + (2.85e9 - 1.64e9i)T + (2.77e18 - 4.81e18i)T^{2} \)
13 \( 1 + (-1.41e9 + 2.45e9i)T + (-5.62e19 - 9.73e19i)T^{2} \)
17 \( 1 + 3.48e10iT - 1.40e22T^{2} \)
19 \( 1 - 1.82e11T + 1.04e23T^{2} \)
23 \( 1 + (-2.70e12 - 1.56e12i)T + (1.62e24 + 2.80e24i)T^{2} \)
29 \( 1 + (5.66e12 - 3.26e12i)T + (1.05e26 - 1.82e26i)T^{2} \)
31 \( 1 + (-1.57e13 + 2.72e13i)T + (-3.49e26 - 6.05e26i)T^{2} \)
37 \( 1 - 1.46e14T + 1.68e28T^{2} \)
41 \( 1 + (9.47e13 + 5.47e13i)T + (5.35e28 + 9.28e28i)T^{2} \)
43 \( 1 + (4.63e14 + 8.02e14i)T + (-1.26e29 + 2.18e29i)T^{2} \)
47 \( 1 + (1.00e14 - 5.81e13i)T + (6.26e29 - 1.08e30i)T^{2} \)
53 \( 1 - 3.21e15iT - 1.08e31T^{2} \)
59 \( 1 + (-7.72e15 - 4.46e15i)T + (3.75e31 + 6.49e31i)T^{2} \)
61 \( 1 + (5.26e15 + 9.12e15i)T + (-6.83e31 + 1.18e32i)T^{2} \)
67 \( 1 + (-2.33e16 + 4.04e16i)T + (-3.70e32 - 6.41e32i)T^{2} \)
71 \( 1 + 5.73e16iT - 2.10e33T^{2} \)
73 \( 1 + 6.01e16T + 3.46e33T^{2} \)
79 \( 1 + (-7.20e16 - 1.24e17i)T + (-7.18e33 + 1.24e34i)T^{2} \)
83 \( 1 + (-2.87e17 + 1.66e17i)T + (1.74e34 - 3.02e34i)T^{2} \)
89 \( 1 - 5.02e15iT - 1.22e35T^{2} \)
97 \( 1 + (-1.27e17 - 2.20e17i)T + (-2.88e35 + 5.00e35i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.02855901173420669143471453143, −15.09567209366912226221377776335, −13.64716428467403059889288793840, −13.24707664824507323036992527670, −10.65833508456516458798011664210, −9.538605247678194164608877748023, −7.47471508786110948043213612517, −5.11193417351226732257965386576, −3.33794641828487244374674149375, −2.31332733212988070641779130662, 1.07807311884680632758775351986, 2.76791888466520971458928008202, 5.17143598712144514042110723645, 6.34189261892132145880557266925, 8.701783260935052630334439939938, 9.818985810623390217962460096466, 12.91214810075022172586929555337, 13.34468802101135566367748859478, 14.68384050458645177390121716134, 16.10966713655485236333970407943

Graph of the $Z$-function along the critical line