Properties

Label 2-3e2-9.2-c18-0-5
Degree $2$
Conductor $9$
Sign $0.947 + 0.319i$
Analytic cond. $18.4847$
Root an. cond. $4.29938$
Motivic weight $18$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (56.6 + 32.7i)2-s + (−1.10e4 + 1.62e4i)3-s + (−1.28e5 − 2.23e5i)4-s + (−2.62e6 + 1.51e6i)5-s + (−1.16e6 + 5.57e5i)6-s + (−1.47e6 + 2.55e6i)7-s − 3.40e7i·8-s + (−1.41e8 − 3.60e8i)9-s − 1.98e8·10-s + (−1.04e9 − 6.05e8i)11-s + (5.06e9 + 3.82e8i)12-s + (8.64e9 + 1.49e10i)13-s + (−1.67e8 + 9.66e7i)14-s + (4.49e9 − 5.94e10i)15-s + (−3.26e10 + 5.66e10i)16-s − 1.25e11i·17-s + ⋯
L(s)  = 1  + (0.110 + 0.0638i)2-s + (−0.563 + 0.825i)3-s + (−0.491 − 0.851i)4-s + (−1.34 + 0.775i)5-s + (−0.115 + 0.0553i)6-s + (−0.0366 + 0.0633i)7-s − 0.253i·8-s + (−0.364 − 0.931i)9-s − 0.198·10-s + (−0.444 − 0.256i)11-s + (0.980 + 0.0741i)12-s + (0.815 + 1.41i)13-s + (−0.00810 + 0.00467i)14-s + (0.116 − 1.54i)15-s + (−0.475 + 0.823i)16-s − 1.05i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $0.947 + 0.319i$
Analytic conductor: \(18.4847\)
Root analytic conductor: \(4.29938\)
Motivic weight: \(18\)
Rational: no
Arithmetic: yes
Character: $\chi_{9} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :9),\ 0.947 + 0.319i)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(0.744985 - 0.122318i\)
\(L(\frac12)\) \(\approx\) \(0.744985 - 0.122318i\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (1.10e4 - 1.62e4i)T \)
good2 \( 1 + (-56.6 - 32.7i)T + (1.31e5 + 2.27e5i)T^{2} \)
5 \( 1 + (2.62e6 - 1.51e6i)T + (1.90e12 - 3.30e12i)T^{2} \)
7 \( 1 + (1.47e6 - 2.55e6i)T + (-8.14e14 - 1.41e15i)T^{2} \)
11 \( 1 + (1.04e9 + 6.05e8i)T + (2.77e18 + 4.81e18i)T^{2} \)
13 \( 1 + (-8.64e9 - 1.49e10i)T + (-5.62e19 + 9.73e19i)T^{2} \)
17 \( 1 + 1.25e11iT - 1.40e22T^{2} \)
19 \( 1 - 2.32e11T + 1.04e23T^{2} \)
23 \( 1 + (-2.16e12 + 1.25e12i)T + (1.62e24 - 2.80e24i)T^{2} \)
29 \( 1 + (9.21e12 + 5.32e12i)T + (1.05e26 + 1.82e26i)T^{2} \)
31 \( 1 + (-9.13e12 - 1.58e13i)T + (-3.49e26 + 6.05e26i)T^{2} \)
37 \( 1 + 1.98e14T + 1.68e28T^{2} \)
41 \( 1 + (-1.49e14 + 8.64e13i)T + (5.35e28 - 9.28e28i)T^{2} \)
43 \( 1 + (-1.54e14 + 2.66e14i)T + (-1.26e29 - 2.18e29i)T^{2} \)
47 \( 1 + (1.53e15 + 8.86e14i)T + (6.26e29 + 1.08e30i)T^{2} \)
53 \( 1 + 1.23e15iT - 1.08e31T^{2} \)
59 \( 1 + (-5.11e15 + 2.95e15i)T + (3.75e31 - 6.49e31i)T^{2} \)
61 \( 1 + (2.41e15 - 4.17e15i)T + (-6.83e31 - 1.18e32i)T^{2} \)
67 \( 1 + (1.60e14 + 2.77e14i)T + (-3.70e32 + 6.41e32i)T^{2} \)
71 \( 1 + 3.72e16iT - 2.10e33T^{2} \)
73 \( 1 - 1.13e17T + 3.46e33T^{2} \)
79 \( 1 + (-9.38e16 + 1.62e17i)T + (-7.18e33 - 1.24e34i)T^{2} \)
83 \( 1 + (-8.86e16 - 5.11e16i)T + (1.74e34 + 3.02e34i)T^{2} \)
89 \( 1 - 2.88e16iT - 1.22e35T^{2} \)
97 \( 1 + (-1.50e17 + 2.60e17i)T + (-2.88e35 - 5.00e35i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.20171326721347280239503047843, −15.34391262160504434370960565006, −14.08639338199926527384150019847, −11.64169774992560943911129881254, −10.71352543376813753573453233759, −9.060790406517728536682336732160, −6.74194726419203522310669050000, −4.92972736253347342638086842480, −3.58053887335520664889770349834, −0.45830469622939823684133287512, 0.834342656384125783937777969994, 3.46875015658627261162376781953, 5.15909383897497307623297805443, 7.57544242997490654569637710362, 8.380679000287394739451422197776, 11.21578759135664618088668348911, 12.51814208682826761055617193388, 13.16453705799847154987663046642, 15.62262286790233356732803563632, 16.92474909575324066034783295186

Graph of the $Z$-function along the critical line