Properties

Label 2-3e2-9.2-c18-0-3
Degree $2$
Conductor $9$
Sign $-0.134 - 0.990i$
Analytic cond. $18.4847$
Root an. cond. $4.29938$
Motivic weight $18$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (437. + 252. i)2-s + (−7.96e3 − 1.80e4i)3-s + (−3.38e3 − 5.86e3i)4-s + (−6.93e5 + 4.00e5i)5-s + (1.06e6 − 9.88e6i)6-s + (−2.35e7 + 4.07e7i)7-s − 1.35e8i·8-s + (−2.60e8 + 2.86e8i)9-s − 4.04e8·10-s + (3.96e9 + 2.28e9i)11-s + (−7.86e7 + 1.07e8i)12-s + (7.58e9 + 1.31e10i)13-s + (−2.06e10 + 1.19e10i)14-s + (1.27e10 + 9.29e9i)15-s + (3.34e10 − 5.79e10i)16-s + 1.64e10i·17-s + ⋯
L(s)  = 1  + (0.854 + 0.493i)2-s + (−0.404 − 0.914i)3-s + (−0.0129 − 0.0223i)4-s + (−0.355 + 0.204i)5-s + (0.105 − 0.981i)6-s + (−0.583 + 1.01i)7-s − 1.01i·8-s + (−0.672 + 0.739i)9-s − 0.404·10-s + (1.67 + 0.969i)11-s + (−0.0152 + 0.0208i)12-s + (0.715 + 1.23i)13-s + (−0.997 + 0.576i)14-s + (0.331 + 0.241i)15-s + (0.486 − 0.843i)16-s + 0.138i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.134 - 0.990i)\, \overline{\Lambda}(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & (-0.134 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $-0.134 - 0.990i$
Analytic conductor: \(18.4847\)
Root analytic conductor: \(4.29938\)
Motivic weight: \(18\)
Rational: no
Arithmetic: yes
Character: $\chi_{9} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :9),\ -0.134 - 0.990i)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(1.01796 + 1.16515i\)
\(L(\frac12)\) \(\approx\) \(1.01796 + 1.16515i\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (7.96e3 + 1.80e4i)T \)
good2 \( 1 + (-437. - 252. i)T + (1.31e5 + 2.27e5i)T^{2} \)
5 \( 1 + (6.93e5 - 4.00e5i)T + (1.90e12 - 3.30e12i)T^{2} \)
7 \( 1 + (2.35e7 - 4.07e7i)T + (-8.14e14 - 1.41e15i)T^{2} \)
11 \( 1 + (-3.96e9 - 2.28e9i)T + (2.77e18 + 4.81e18i)T^{2} \)
13 \( 1 + (-7.58e9 - 1.31e10i)T + (-5.62e19 + 9.73e19i)T^{2} \)
17 \( 1 - 1.64e10iT - 1.40e22T^{2} \)
19 \( 1 + 4.16e11T + 1.04e23T^{2} \)
23 \( 1 + (6.08e11 - 3.51e11i)T + (1.62e24 - 2.80e24i)T^{2} \)
29 \( 1 + (1.62e13 + 9.39e12i)T + (1.05e26 + 1.82e26i)T^{2} \)
31 \( 1 + (-1.04e13 - 1.81e13i)T + (-3.49e26 + 6.05e26i)T^{2} \)
37 \( 1 - 1.49e13T + 1.68e28T^{2} \)
41 \( 1 + (1.26e14 - 7.31e13i)T + (5.35e28 - 9.28e28i)T^{2} \)
43 \( 1 + (-1.73e13 + 3.00e13i)T + (-1.26e29 - 2.18e29i)T^{2} \)
47 \( 1 + (-7.42e14 - 4.28e14i)T + (6.26e29 + 1.08e30i)T^{2} \)
53 \( 1 - 3.44e15iT - 1.08e31T^{2} \)
59 \( 1 + (-1.12e15 + 6.49e14i)T + (3.75e31 - 6.49e31i)T^{2} \)
61 \( 1 + (-6.70e15 + 1.16e16i)T + (-6.83e31 - 1.18e32i)T^{2} \)
67 \( 1 + (1.59e16 + 2.76e16i)T + (-3.70e32 + 6.41e32i)T^{2} \)
71 \( 1 - 5.68e16iT - 2.10e33T^{2} \)
73 \( 1 + 2.38e16T + 3.46e33T^{2} \)
79 \( 1 + (9.02e16 - 1.56e17i)T + (-7.18e33 - 1.24e34i)T^{2} \)
83 \( 1 + (-5.58e16 - 3.22e16i)T + (1.74e34 + 3.02e34i)T^{2} \)
89 \( 1 - 1.36e17iT - 1.22e35T^{2} \)
97 \( 1 + (-5.79e17 + 1.00e18i)T + (-2.88e35 - 5.00e35i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.97162005203060229509727042064, −15.37123225761118964370165956992, −14.17116190630665233329112658093, −12.72680539418027495145998188062, −11.68255003859727157108185934546, −9.179638083368271659836099373202, −6.84005783607893448891125279598, −6.04568917729942167282336249623, −4.09350176568590751147196066791, −1.68543494031466022542692437700, 0.47335055901071461772801475551, 3.51118519863660946294977416216, 4.12611937125946223927831949063, 6.03376956301892290704597798091, 8.643972424217017736860066544022, 10.58182810764097175190335202638, 11.76014119824844929823337481515, 13.28230271695235599964574940943, 14.66521541821328752571671771882, 16.39515551318854760453999963753

Graph of the $Z$-function along the critical line