Properties

Label 2-3e2-1.1-c99-0-1
Degree $2$
Conductor $9$
Sign $1$
Analytic cond. $558.609$
Root an. cond. $23.6349$
Motivic weight $99$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.33e29·4-s − 3.68e40·7-s − 1.20e55·13-s + 4.01e59·16-s − 3.68e63·19-s − 1.57e69·25-s + 2.33e70·28-s − 1.28e74·31-s + 8.09e77·37-s − 1.22e81·43-s − 4.60e83·49-s + 7.64e84·52-s + 2.78e87·61-s − 2.54e89·64-s + 3.12e90·67-s − 2.77e92·73-s + 2.33e93·76-s − 7.87e93·79-s + 4.44e95·91-s − 1.20e98·97-s + 9.99e98·100-s − 1.48e100·112-s + ⋯
L(s)  = 1  − 4-s − 0.0542·7-s − 0.873·13-s + 16-s − 1.85·19-s − 25-s + 0.0542·28-s − 1.93·31-s + 1.91·37-s − 1.70·43-s − 0.997·49-s + 0.873·52-s + 0.117·61-s − 64-s + 1.26·67-s − 1.61·73-s + 1.85·76-s − 0.920·79-s + 0.0473·91-s − 0.543·97-s + 100-s − 0.0542·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(100-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+99/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $1$
Analytic conductor: \(558.609\)
Root analytic conductor: \(23.6349\)
Motivic weight: \(99\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :99/2),\ 1)\)

Particular Values

\(L(50)\) \(\approx\) \(0.02240953788\)
\(L(\frac12)\) \(\approx\) \(0.02240953788\)
\(L(\frac{101}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + p^{99} T^{2} \)
5 \( 1 + p^{99} T^{2} \)
7 \( 1 + \)\(36\!\cdots\!40\)\( T + p^{99} T^{2} \)
11 \( 1 + p^{99} T^{2} \)
13 \( 1 + \)\(12\!\cdots\!10\)\( T + p^{99} T^{2} \)
17 \( 1 + p^{99} T^{2} \)
19 \( 1 + \)\(36\!\cdots\!04\)\( T + p^{99} T^{2} \)
23 \( 1 + p^{99} T^{2} \)
29 \( 1 + p^{99} T^{2} \)
31 \( 1 + \)\(12\!\cdots\!72\)\( T + p^{99} T^{2} \)
37 \( 1 - \)\(80\!\cdots\!30\)\( T + p^{99} T^{2} \)
41 \( 1 + p^{99} T^{2} \)
43 \( 1 + \)\(12\!\cdots\!60\)\( T + p^{99} T^{2} \)
47 \( 1 + p^{99} T^{2} \)
53 \( 1 + p^{99} T^{2} \)
59 \( 1 + p^{99} T^{2} \)
61 \( 1 - \)\(27\!\cdots\!42\)\( T + p^{99} T^{2} \)
67 \( 1 - \)\(31\!\cdots\!60\)\( T + p^{99} T^{2} \)
71 \( 1 + p^{99} T^{2} \)
73 \( 1 + \)\(27\!\cdots\!30\)\( T + p^{99} T^{2} \)
79 \( 1 + \)\(78\!\cdots\!76\)\( T + p^{99} T^{2} \)
83 \( 1 + p^{99} T^{2} \)
89 \( 1 + p^{99} T^{2} \)
97 \( 1 + \)\(12\!\cdots\!90\)\( T + p^{99} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.430137989404172297282633781320, −8.480663346729351050966295307705, −7.60123708549594464943599756800, −6.35665994266684769038950329418, −5.33763996812690099983080450304, −4.42922126326569788162779684247, −3.69703250675794071184371433978, −2.45034939179629211578981378167, −1.47707628857318269078935873942, −0.05194598604784005219152009507, 0.05194598604784005219152009507, 1.47707628857318269078935873942, 2.45034939179629211578981378167, 3.69703250675794071184371433978, 4.42922126326569788162779684247, 5.33763996812690099983080450304, 6.35665994266684769038950329418, 7.60123708549594464943599756800, 8.480663346729351050966295307705, 9.430137989404172297282633781320

Graph of the $Z$-function along the critical line