Properties

Label 2-3e2-1.1-c9-0-1
Degree $2$
Conductor $9$
Sign $1$
Analytic cond. $4.63532$
Root an. cond. $2.15297$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 36·2-s + 784·4-s + 1.31e3·5-s − 4.48e3·7-s + 9.79e3·8-s + 4.73e4·10-s − 1.47e3·11-s − 1.51e5·13-s − 1.61e5·14-s − 4.88e4·16-s − 1.08e5·17-s + 5.93e5·19-s + 1.03e6·20-s − 5.31e4·22-s + 9.69e5·23-s − 2.26e5·25-s − 5.45e6·26-s − 3.51e6·28-s + 6.64e6·29-s + 7.07e6·31-s − 6.77e6·32-s − 3.89e6·34-s − 5.88e6·35-s − 7.47e6·37-s + 2.13e7·38-s + 1.28e7·40-s + 4.35e6·41-s + ⋯
L(s)  = 1  + 1.59·2-s + 1.53·4-s + 0.940·5-s − 0.705·7-s + 0.845·8-s + 1.49·10-s − 0.0303·11-s − 1.47·13-s − 1.12·14-s − 0.186·16-s − 0.314·17-s + 1.04·19-s + 1.43·20-s − 0.0483·22-s + 0.722·23-s − 0.115·25-s − 2.34·26-s − 1.07·28-s + 1.74·29-s + 1.37·31-s − 1.14·32-s − 0.499·34-s − 0.663·35-s − 0.655·37-s + 1.66·38-s + 0.794·40-s + 0.240·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $1$
Analytic conductor: \(4.63532\)
Root analytic conductor: \(2.15297\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(3.348934505\)
\(L(\frac12)\) \(\approx\) \(3.348934505\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 9 p^{2} T + p^{9} T^{2} \)
5 \( 1 - 1314 T + p^{9} T^{2} \)
7 \( 1 + 640 p T + p^{9} T^{2} \)
11 \( 1 + 1476 T + p^{9} T^{2} \)
13 \( 1 + 151522 T + p^{9} T^{2} \)
17 \( 1 + 108162 T + p^{9} T^{2} \)
19 \( 1 - 593084 T + p^{9} T^{2} \)
23 \( 1 - 969480 T + p^{9} T^{2} \)
29 \( 1 - 6642522 T + p^{9} T^{2} \)
31 \( 1 - 7070600 T + p^{9} T^{2} \)
37 \( 1 + 7472410 T + p^{9} T^{2} \)
41 \( 1 - 4350150 T + p^{9} T^{2} \)
43 \( 1 + 4358716 T + p^{9} T^{2} \)
47 \( 1 + 28309248 T + p^{9} T^{2} \)
53 \( 1 + 16111710 T + p^{9} T^{2} \)
59 \( 1 - 86075964 T + p^{9} T^{2} \)
61 \( 1 - 32213918 T + p^{9} T^{2} \)
67 \( 1 - 99531452 T + p^{9} T^{2} \)
71 \( 1 - 44170488 T + p^{9} T^{2} \)
73 \( 1 + 23560630 T + p^{9} T^{2} \)
79 \( 1 + 401754760 T + p^{9} T^{2} \)
83 \( 1 - 744528708 T + p^{9} T^{2} \)
89 \( 1 + 769871034 T + p^{9} T^{2} \)
97 \( 1 - 907130882 T + p^{9} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.60696650808100087458012565792, −17.51557137290252570088223125072, −15.81690395220482879536495864101, −14.33809375015404991495095619307, −13.29206482181447551758779020482, −12.03578742848102127369637849461, −9.833586942827917393792392911714, −6.62417014582556452549137957823, −5.03891167141543488409792631707, −2.76319651467288245806051970006, 2.76319651467288245806051970006, 5.03891167141543488409792631707, 6.62417014582556452549137957823, 9.833586942827917393792392911714, 12.03578742848102127369637849461, 13.29206482181447551758779020482, 14.33809375015404991495095619307, 15.81690395220482879536495864101, 17.51557137290252570088223125072, 19.60696650808100087458012565792

Graph of the $Z$-function along the critical line