Properties

Label 2-3e2-1.1-c15-0-5
Degree $2$
Conductor $9$
Sign $-1$
Analytic cond. $12.8424$
Root an. cond. $3.58363$
Motivic weight $15$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 234·2-s + 2.19e4·4-s − 2.80e5·5-s − 1.37e6·7-s − 2.52e6·8-s − 6.56e7·10-s − 3.40e7·11-s + 3.84e8·13-s − 3.21e8·14-s − 1.31e9·16-s − 1.25e9·17-s − 2.49e9·19-s − 6.17e9·20-s − 7.96e9·22-s − 1.12e10·23-s + 4.82e10·25-s + 8.98e10·26-s − 3.01e10·28-s + 4.84e10·29-s + 1.30e11·31-s − 2.24e11·32-s − 2.94e11·34-s + 3.85e11·35-s − 2.00e11·37-s − 5.84e11·38-s + 7.08e11·40-s − 6.79e11·41-s + ⋯
L(s)  = 1  + 1.29·2-s + 0.671·4-s − 1.60·5-s − 0.630·7-s − 0.425·8-s − 2.07·10-s − 0.526·11-s + 1.69·13-s − 0.814·14-s − 1.22·16-s − 0.744·17-s − 0.641·19-s − 1.07·20-s − 0.680·22-s − 0.691·23-s + 1.58·25-s + 2.19·26-s − 0.422·28-s + 0.521·29-s + 0.852·31-s − 1.15·32-s − 0.962·34-s + 1.01·35-s − 0.346·37-s − 0.829·38-s + 0.683·40-s − 0.544·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9\)    =    \(3^{2}\)
Sign: $-1$
Analytic conductor: \(12.8424\)
Root analytic conductor: \(3.58363\)
Motivic weight: \(15\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9,\ (\ :15/2),\ -1)\)

Particular Values

\(L(8)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 117 p T + p^{15} T^{2} \)
5 \( 1 + 56142 p T + p^{15} T^{2} \)
7 \( 1 + 196192 p T + p^{15} T^{2} \)
11 \( 1 + 3093732 p T + p^{15} T^{2} \)
13 \( 1 - 29540174 p T + p^{15} T^{2} \)
17 \( 1 + 1259207586 T + p^{15} T^{2} \)
19 \( 1 + 2499071020 T + p^{15} T^{2} \)
23 \( 1 + 11284833672 T + p^{15} T^{2} \)
29 \( 1 - 48413458530 T + p^{15} T^{2} \)
31 \( 1 - 130547265752 T + p^{15} T^{2} \)
37 \( 1 + 200223317554 T + p^{15} T^{2} \)
41 \( 1 + 679141724202 T + p^{15} T^{2} \)
43 \( 1 - 279482194892 T + p^{15} T^{2} \)
47 \( 1 + 1520672832576 T + p^{15} T^{2} \)
53 \( 1 + 2646053822502 T + p^{15} T^{2} \)
59 \( 1 + 7399371294540 T + p^{15} T^{2} \)
61 \( 1 + 42659617819498 T + p^{15} T^{2} \)
67 \( 1 + 56408026065964 T + p^{15} T^{2} \)
71 \( 1 - 133149677299848 T + p^{15} T^{2} \)
73 \( 1 - 105603350884922 T + p^{15} T^{2} \)
79 \( 1 + 55665674361880 T + p^{15} T^{2} \)
83 \( 1 + 378077412997332 T + p^{15} T^{2} \)
89 \( 1 + 219315065897610 T + p^{15} T^{2} \)
97 \( 1 - 703322682162626 T + p^{15} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94975230373702367609684164490, −15.37957743871858346982311954044, −13.60228144530533174523323693562, −12.40150591253314084315642611579, −11.11667572095267042038072208799, −8.415536609027378731251635101217, −6.39821900210088567252431060057, −4.36320787250641448880570381774, −3.28524151911726830018044993257, 0, 3.28524151911726830018044993257, 4.36320787250641448880570381774, 6.39821900210088567252431060057, 8.415536609027378731251635101217, 11.11667572095267042038072208799, 12.40150591253314084315642611579, 13.60228144530533174523323693562, 15.37957743871858346982311954044, 15.94975230373702367609684164490

Graph of the $Z$-function along the critical line