Properties

Label 2-39e2-1.1-c3-0-19
Degree $2$
Conductor $1521$
Sign $1$
Analytic cond. $89.7419$
Root an. cond. $9.47322$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s − 20·7-s + 64·16-s − 56·19-s − 125·25-s + 160·28-s − 308·31-s − 110·37-s − 520·43-s + 57·49-s + 182·61-s − 512·64-s + 880·67-s − 1.19e3·73-s + 448·76-s + 884·79-s + 1.33e3·97-s + 1.00e3·100-s + 1.82e3·103-s + 646·109-s − 1.28e3·112-s + ⋯
L(s)  = 1  − 4-s − 1.07·7-s + 16-s − 0.676·19-s − 25-s + 1.07·28-s − 1.78·31-s − 0.488·37-s − 1.84·43-s + 0.166·49-s + 0.382·61-s − 64-s + 1.60·67-s − 1.90·73-s + 0.676·76-s + 1.25·79-s + 1.39·97-s + 100-s + 1.74·103-s + 0.567·109-s − 1.07·112-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(89.7419\)
Root analytic conductor: \(9.47322\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1521,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.5836889778\)
\(L(\frac12)\) \(\approx\) \(0.5836889778\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
13 \( 1 \)
good2 \( 1 + p^{3} T^{2} \)
5 \( 1 + p^{3} T^{2} \)
7 \( 1 + 20 T + p^{3} T^{2} \)
11 \( 1 + p^{3} T^{2} \)
17 \( 1 + p^{3} T^{2} \)
19 \( 1 + 56 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + p^{3} T^{2} \)
31 \( 1 + 308 T + p^{3} T^{2} \)
37 \( 1 + 110 T + p^{3} T^{2} \)
41 \( 1 + p^{3} T^{2} \)
43 \( 1 + 520 T + p^{3} T^{2} \)
47 \( 1 + p^{3} T^{2} \)
53 \( 1 + p^{3} T^{2} \)
59 \( 1 + p^{3} T^{2} \)
61 \( 1 - 182 T + p^{3} T^{2} \)
67 \( 1 - 880 T + p^{3} T^{2} \)
71 \( 1 + p^{3} T^{2} \)
73 \( 1 + 1190 T + p^{3} T^{2} \)
79 \( 1 - 884 T + p^{3} T^{2} \)
83 \( 1 + p^{3} T^{2} \)
89 \( 1 + p^{3} T^{2} \)
97 \( 1 - 1330 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.128259920149454599105881726584, −8.474264327392467569383426992496, −7.55326526238465471383452984841, −6.60824334894450726365154115399, −5.78491532683739033575566513445, −4.94986190520765637234160228414, −3.88153215661751968936986651283, −3.31385040095635340929951606062, −1.88323948183718506439718852949, −0.36382943752534658890646139082, 0.36382943752534658890646139082, 1.88323948183718506439718852949, 3.31385040095635340929951606062, 3.88153215661751968936986651283, 4.94986190520765637234160228414, 5.78491532683739033575566513445, 6.60824334894450726365154115399, 7.55326526238465471383452984841, 8.474264327392467569383426992496, 9.128259920149454599105881726584

Graph of the $Z$-function along the critical line