L(s) = 1 | − 8·4-s − 20·7-s + 64·16-s − 56·19-s − 125·25-s + 160·28-s − 308·31-s − 110·37-s − 520·43-s + 57·49-s + 182·61-s − 512·64-s + 880·67-s − 1.19e3·73-s + 448·76-s + 884·79-s + 1.33e3·97-s + 1.00e3·100-s + 1.82e3·103-s + 646·109-s − 1.28e3·112-s + ⋯ |
L(s) = 1 | − 4-s − 1.07·7-s + 16-s − 0.676·19-s − 25-s + 1.07·28-s − 1.78·31-s − 0.488·37-s − 1.84·43-s + 0.166·49-s + 0.382·61-s − 64-s + 1.60·67-s − 1.90·73-s + 0.676·76-s + 1.25·79-s + 1.39·97-s + 100-s + 1.74·103-s + 0.567·109-s − 1.07·112-s + ⋯ |
Λ(s)=(=(1521s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1521s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.5836889778 |
L(21) |
≈ |
0.5836889778 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 13 | 1 |
good | 2 | 1+p3T2 |
| 5 | 1+p3T2 |
| 7 | 1+20T+p3T2 |
| 11 | 1+p3T2 |
| 17 | 1+p3T2 |
| 19 | 1+56T+p3T2 |
| 23 | 1+p3T2 |
| 29 | 1+p3T2 |
| 31 | 1+308T+p3T2 |
| 37 | 1+110T+p3T2 |
| 41 | 1+p3T2 |
| 43 | 1+520T+p3T2 |
| 47 | 1+p3T2 |
| 53 | 1+p3T2 |
| 59 | 1+p3T2 |
| 61 | 1−182T+p3T2 |
| 67 | 1−880T+p3T2 |
| 71 | 1+p3T2 |
| 73 | 1+1190T+p3T2 |
| 79 | 1−884T+p3T2 |
| 83 | 1+p3T2 |
| 89 | 1+p3T2 |
| 97 | 1−1330T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.128259920149454599105881726584, −8.474264327392467569383426992496, −7.55326526238465471383452984841, −6.60824334894450726365154115399, −5.78491532683739033575566513445, −4.94986190520765637234160228414, −3.88153215661751968936986651283, −3.31385040095635340929951606062, −1.88323948183718506439718852949, −0.36382943752534658890646139082,
0.36382943752534658890646139082, 1.88323948183718506439718852949, 3.31385040095635340929951606062, 3.88153215661751968936986651283, 4.94986190520765637234160228414, 5.78491532683739033575566513445, 6.60824334894450726365154115399, 7.55326526238465471383452984841, 8.474264327392467569383426992496, 9.128259920149454599105881726584