| L(s) = 1 | + 1.41·2-s + 3-s + 1.00·4-s − 1.41·5-s + 1.41·6-s − 7-s + 9-s − 2.00·10-s + 1.00·12-s − 1.41·14-s − 1.41·15-s − 0.999·16-s + 1.41·17-s + 1.41·18-s − 19-s − 1.41·20-s − 21-s + 1.00·25-s + 27-s − 1.00·28-s − 1.41·29-s − 2.00·30-s − 1.41·32-s + 2.00·34-s + 1.41·35-s + 1.00·36-s − 1.41·38-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3-s + 1.00·4-s − 1.41·5-s + 1.41·6-s − 7-s + 9-s − 2.00·10-s + 1.00·12-s − 1.41·14-s − 1.41·15-s − 0.999·16-s + 1.41·17-s + 1.41·18-s − 19-s − 1.41·20-s − 21-s + 1.00·25-s + 27-s − 1.00·28-s − 1.41·29-s − 2.00·30-s − 1.41·32-s + 2.00·34-s + 1.41·35-s + 1.00·36-s − 1.41·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.620154198\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.620154198\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 - T \) |
| 7 | \( 1 + T \) |
| 19 | \( 1 + T \) |
| good | 2 | \( 1 - 1.41T + T^{2} \) |
| 5 | \( 1 + 1.41T + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - 1.41T + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + 1.41T + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + 2T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99848981092073329822261197343, −10.80815075194814058194729329802, −9.627278927558038456283918786963, −8.633179127607822804168365073708, −7.61041742098565569331674217171, −6.81707459781580481646892467869, −5.54021632027126834546613086099, −4.06830319459010493943539767477, −3.72950815874745772564243692150, −2.71533504209182105553324898608,
2.71533504209182105553324898608, 3.72950815874745772564243692150, 4.06830319459010493943539767477, 5.54021632027126834546613086099, 6.81707459781580481646892467869, 7.61041742098565569331674217171, 8.633179127607822804168365073708, 9.627278927558038456283918786963, 10.80815075194814058194729329802, 11.99848981092073329822261197343