Properties

Label 2-399-399.398-c0-0-1
Degree $2$
Conductor $399$
Sign $1$
Analytic cond. $0.199126$
Root an. cond. $0.446236$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4-s + 7-s + 9-s + 12-s + 2·13-s + 16-s − 19-s − 21-s − 25-s − 27-s − 28-s + 2·31-s − 36-s − 2·39-s − 2·43-s − 48-s + 49-s − 2·52-s + 57-s + 63-s − 64-s + 75-s + 76-s + 81-s + 84-s + 2·91-s + ⋯
L(s)  = 1  − 3-s − 4-s + 7-s + 9-s + 12-s + 2·13-s + 16-s − 19-s − 21-s − 25-s − 27-s − 28-s + 2·31-s − 36-s − 2·39-s − 2·43-s − 48-s + 49-s − 2·52-s + 57-s + 63-s − 64-s + 75-s + 76-s + 81-s + 84-s + 2·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(399\)    =    \(3 \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(0.199126\)
Root analytic conductor: \(0.446236\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{399} (398, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 399,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5941442176\)
\(L(\frac12)\) \(\approx\) \(0.5941442176\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
19 \( 1 + T \)
good2 \( 1 + T^{2} \)
5 \( 1 + T^{2} \)
11 \( ( 1 - T )( 1 + T ) \)
13 \( ( 1 - T )^{2} \)
17 \( 1 + T^{2} \)
23 \( ( 1 - T )( 1 + T ) \)
29 \( 1 + T^{2} \)
31 \( ( 1 - T )^{2} \)
37 \( ( 1 - T )( 1 + T ) \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 + T )^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 - T )( 1 + T ) \)
71 \( 1 + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 - T )( 1 + T ) \)
83 \( 1 + T^{2} \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 + T )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.43531789730544054212942034762, −10.69031857678941998590533755169, −9.852184327363610117644180104244, −8.565301410105063599651733364189, −8.079768711600176609151322313087, −6.52346481263202133528329542436, −5.68083507792614620484849484540, −4.65098871184700684507876309771, −3.87052350923602871652968544839, −1.37167694822665074547560374203, 1.37167694822665074547560374203, 3.87052350923602871652968544839, 4.65098871184700684507876309771, 5.68083507792614620484849484540, 6.52346481263202133528329542436, 8.079768711600176609151322313087, 8.565301410105063599651733364189, 9.852184327363610117644180104244, 10.69031857678941998590533755169, 11.43531789730544054212942034762

Graph of the $Z$-function along the critical line