| L(s) = 1 | + (1.77 + 2.11i)2-s + (−0.173 − 0.984i)3-s + (−0.981 + 5.56i)4-s + (−1.01 + 0.179i)5-s + (1.77 − 2.11i)6-s + (−2.26 + 1.36i)7-s + (−8.75 + 5.05i)8-s + (−0.939 + 0.342i)9-s + (−2.18 − 1.83i)10-s − 0.467·11-s + 5.65·12-s + (4.39 + 3.69i)13-s + (−6.91 − 2.38i)14-s + (0.352 + 0.968i)15-s + (−15.6 − 5.69i)16-s + (1.60 − 4.39i)17-s + ⋯ |
| L(s) = 1 | + (1.25 + 1.49i)2-s + (−0.100 − 0.568i)3-s + (−0.490 + 2.78i)4-s + (−0.454 + 0.0800i)5-s + (0.725 − 0.865i)6-s + (−0.857 + 0.514i)7-s + (−3.09 + 1.78i)8-s + (−0.313 + 0.114i)9-s + (−0.690 − 0.579i)10-s − 0.140·11-s + 1.63·12-s + (1.21 + 1.02i)13-s + (−1.84 − 0.637i)14-s + (0.0910 + 0.250i)15-s + (−3.91 − 1.42i)16-s + (0.388 − 1.06i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.971 - 0.237i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.971 - 0.237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.230817 + 1.91402i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.230817 + 1.91402i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.173 + 0.984i)T \) |
| 7 | \( 1 + (2.26 - 1.36i)T \) |
| 19 | \( 1 + (-4.00 - 1.72i)T \) |
| good | 2 | \( 1 + (-1.77 - 2.11i)T + (-0.347 + 1.96i)T^{2} \) |
| 5 | \( 1 + (1.01 - 0.179i)T + (4.69 - 1.71i)T^{2} \) |
| 11 | \( 1 + 0.467T + 11T^{2} \) |
| 13 | \( 1 + (-4.39 - 3.69i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (-1.60 + 4.39i)T + (-13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (-4.77 - 4.01i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-6.63 - 1.16i)T + (27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (2.11 + 3.65i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.40 + 1.38i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.03 + 1.70i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (7.48 + 2.72i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-0.0867 - 0.238i)T + (-36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + (-4.31 - 0.760i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-3.23 - 1.17i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (3.71 - 4.43i)T + (-10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (2.83 - 3.37i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-2.30 + 6.33i)T + (-54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (-5.64 + 0.995i)T + (68.5 - 24.9i)T^{2} \) |
| 79 | \( 1 + (5.15 - 14.1i)T + (-60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (4.82 + 2.78i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-1.86 + 10.5i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (-0.841 - 4.77i)T + (-91.1 + 33.1i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85371217229725071862071402088, −11.55401918159884563394233285363, −9.399499055239371007990449856355, −8.576072668954378685589552745941, −7.52168520273668437918512007569, −6.90154903950363279474672402386, −6.01718106948857247035564000353, −5.24408574254427702868535423344, −3.86517714626262619829822622308, −2.98577464429223504480911298127,
0.915190648700101414708476967909, 3.02066648481999370369221254917, 3.59017734611098692369746335789, 4.57594825930765826920887532812, 5.65697202229672639035419967097, 6.52842645471434727616984774998, 8.407829310218354593252535995879, 9.602100130010170740402405266138, 10.39475193191604955978488198780, 10.83670744811851054311522559387