Properties

Label 2-399-133.10-c1-0-22
Degree $2$
Conductor $399$
Sign $-0.166 + 0.986i$
Analytic cond. $3.18603$
Root an. cond. $1.78494$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.137 − 0.163i)2-s + (−0.173 − 0.984i)3-s + (0.339 − 1.92i)4-s + (2.98 − 0.526i)5-s + (−0.137 + 0.163i)6-s + (−0.181 − 2.63i)7-s + (−0.730 + 0.421i)8-s + (−0.939 + 0.342i)9-s + (−0.494 − 0.415i)10-s + 1.47·11-s − 1.95·12-s + (3.17 + 2.66i)13-s + (−0.406 + 0.391i)14-s + (−1.03 − 2.84i)15-s + (−3.50 − 1.27i)16-s + (−1.26 + 3.47i)17-s + ⋯
L(s)  = 1  + (−0.0968 − 0.115i)2-s + (−0.100 − 0.568i)3-s + (0.169 − 0.962i)4-s + (1.33 − 0.235i)5-s + (−0.0559 + 0.0666i)6-s + (−0.0685 − 0.997i)7-s + (−0.258 + 0.149i)8-s + (−0.313 + 0.114i)9-s + (−0.156 − 0.131i)10-s + 0.444·11-s − 0.564·12-s + (0.881 + 0.739i)13-s + (−0.108 + 0.104i)14-s + (−0.267 − 0.735i)15-s + (−0.876 − 0.318i)16-s + (−0.306 + 0.842i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.166 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.166 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(399\)    =    \(3 \cdot 7 \cdot 19\)
Sign: $-0.166 + 0.986i$
Analytic conductor: \(3.18603\)
Root analytic conductor: \(1.78494\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{399} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 399,\ (\ :1/2),\ -0.166 + 0.986i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.02127 - 1.20762i\)
\(L(\frac12)\) \(\approx\) \(1.02127 - 1.20762i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.173 + 0.984i)T \)
7 \( 1 + (0.181 + 2.63i)T \)
19 \( 1 + (4.31 - 0.600i)T \)
good2 \( 1 + (0.137 + 0.163i)T + (-0.347 + 1.96i)T^{2} \)
5 \( 1 + (-2.98 + 0.526i)T + (4.69 - 1.71i)T^{2} \)
11 \( 1 - 1.47T + 11T^{2} \)
13 \( 1 + (-3.17 - 2.66i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (1.26 - 3.47i)T + (-13.0 - 10.9i)T^{2} \)
23 \( 1 + (-0.106 - 0.0895i)T + (3.99 + 22.6i)T^{2} \)
29 \( 1 + (-3.71 - 0.654i)T + (27.2 + 9.91i)T^{2} \)
31 \( 1 + (-0.616 - 1.06i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (4.18 - 2.41i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (-6.94 + 5.83i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (1.43 + 0.524i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (3.68 + 10.1i)T + (-36.0 + 30.2i)T^{2} \)
53 \( 1 + (-4.21 - 0.743i)T + (49.8 + 18.1i)T^{2} \)
59 \( 1 + (-5.23 - 1.90i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (5.19 - 6.18i)T + (-10.5 - 60.0i)T^{2} \)
67 \( 1 + (6.08 - 7.25i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (2.60 - 7.14i)T + (-54.3 - 45.6i)T^{2} \)
73 \( 1 + (-12.6 + 2.23i)T + (68.5 - 24.9i)T^{2} \)
79 \( 1 + (-0.251 + 0.691i)T + (-60.5 - 50.7i)T^{2} \)
83 \( 1 + (-13.1 - 7.58i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (1.16 - 6.58i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (-2.19 - 12.4i)T + (-91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70954956052831504865802582130, −10.33790581869454153719652630454, −9.272316175631745361715304618625, −8.489891124675155031229773362319, −6.79422921934895910890185975788, −6.40745917492430221277324085692, −5.46856987352083258275939071421, −4.11493021817986189448365267402, −2.07906239571368348727061662826, −1.22416094335848329698732517854, 2.28321431706907551733536934363, 3.25039267903640308127134446196, 4.73311467143999034561095261152, 5.99539185866190414656644106012, 6.51146611710868111262786960444, 8.042260742710383401087824927032, 8.962105372486124023582291924731, 9.489858200269964893839216679663, 10.63534400153192663886868756389, 11.44417926844787210162243333098

Graph of the $Z$-function along the critical line