| L(s) = 1 | + (0.416 + 0.496i)2-s + (−0.173 − 0.984i)3-s + (0.274 − 1.55i)4-s + (2.05 − 0.362i)5-s + (0.416 − 0.496i)6-s + (2.34 + 1.22i)7-s + (2.00 − 1.15i)8-s + (−0.939 + 0.342i)9-s + (1.03 + 0.868i)10-s − 1.90·11-s − 1.58·12-s + (−2.61 − 2.19i)13-s + (0.370 + 1.67i)14-s + (−0.713 − 1.96i)15-s + (−1.55 − 0.566i)16-s + (−1.24 + 3.40i)17-s + ⋯ |
| L(s) = 1 | + (0.294 + 0.351i)2-s + (−0.100 − 0.568i)3-s + (0.137 − 0.778i)4-s + (0.918 − 0.162i)5-s + (0.170 − 0.202i)6-s + (0.886 + 0.462i)7-s + (0.710 − 0.410i)8-s + (−0.313 + 0.114i)9-s + (0.327 + 0.274i)10-s − 0.574·11-s − 0.456·12-s + (−0.726 − 0.609i)13-s + (0.0989 + 0.447i)14-s + (−0.184 − 0.506i)15-s + (−0.389 − 0.141i)16-s + (−0.300 + 0.826i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.750 + 0.661i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.750 + 0.661i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.79096 - 0.676867i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.79096 - 0.676867i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.173 + 0.984i)T \) |
| 7 | \( 1 + (-2.34 - 1.22i)T \) |
| 19 | \( 1 + (-4.32 + 0.571i)T \) |
| good | 2 | \( 1 + (-0.416 - 0.496i)T + (-0.347 + 1.96i)T^{2} \) |
| 5 | \( 1 + (-2.05 + 0.362i)T + (4.69 - 1.71i)T^{2} \) |
| 11 | \( 1 + 1.90T + 11T^{2} \) |
| 13 | \( 1 + (2.61 + 2.19i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (1.24 - 3.40i)T + (-13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (-0.609 - 0.511i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (-6.37 - 1.12i)T + (27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (1.92 + 3.33i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-8.52 + 4.91i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.97 - 6.69i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (10.9 + 3.98i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-3.43 - 9.42i)T + (-36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + (3.72 + 0.656i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-7.14 - 2.60i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (5.19 - 6.19i)T + (-10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (2.31 - 2.75i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-0.643 + 1.76i)T + (-54.3 - 45.6i)T^{2} \) |
| 73 | \( 1 + (11.7 - 2.07i)T + (68.5 - 24.9i)T^{2} \) |
| 79 | \( 1 + (-1.35 + 3.73i)T + (-60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-12.8 - 7.41i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.21 - 12.5i)T + (-83.6 - 30.4i)T^{2} \) |
| 97 | \( 1 + (-0.898 - 5.09i)T + (-91.1 + 33.1i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14495669550893953147100492192, −10.25756735782925192637839219907, −9.471970259077477863306357017739, −8.228985837206708164201614234249, −7.35471892874652181965958992812, −6.16593847285590179163490702347, −5.48817699994348364797980409170, −4.77052190271132703781979835498, −2.51441044585199342054729154857, −1.40052863878226326105869461778,
2.03737072079354878606806379276, 3.17853025536294743621675892013, 4.60606871543162862499120733003, 5.16495080008316160685643056424, 6.73741665569304779458643423637, 7.67623441302718294127565200014, 8.665499758619108475232479826588, 9.822556377608461778443702630725, 10.45961122162349626465723756266, 11.55660840295033132509021428691