Properties

Label 2-3960-5.4-c1-0-69
Degree $2$
Conductor $3960$
Sign $-0.894 - 0.447i$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 + 2i)5-s − 4i·7-s − 11-s − 6i·13-s + 2i·17-s − 4·19-s − 6i·23-s + (−3 − 4i)25-s − 2·29-s + 8·31-s + (8 + 4i)35-s + 8i·37-s − 6·41-s + 12i·43-s + 10i·47-s + ⋯
L(s)  = 1  + (−0.447 + 0.894i)5-s − 1.51i·7-s − 0.301·11-s − 1.66i·13-s + 0.485i·17-s − 0.917·19-s − 1.25i·23-s + (−0.600 − 0.800i)25-s − 0.371·29-s + 1.43·31-s + (1.35 + 0.676i)35-s + 1.31i·37-s − 0.937·41-s + 1.82i·43-s + 1.45i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3960} (3169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(1\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1 - 2i)T \)
11 \( 1 + T \)
good7 \( 1 + 4iT - 7T^{2} \)
13 \( 1 + 6iT - 13T^{2} \)
17 \( 1 - 2iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 - 8iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 12iT - 43T^{2} \)
47 \( 1 - 10iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + 2iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 2iT - 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 - 4iT - 83T^{2} \)
89 \( 1 + 14T + 89T^{2} \)
97 \( 1 - 4iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.094005497106503424522686677155, −7.38423699253185673021647901859, −6.52940496700225220335212698709, −6.12650605190121258613463840327, −4.76669528937552966059545611232, −4.24087541192893065647347719401, −3.25374408795945736250518516221, −2.71120007214133344256004293538, −1.14268767624092829376826341943, 0, 1.69763026056002695589171623761, 2.34095725083537300450962399157, 3.58617630609164311183359368232, 4.41388260512417558592231944777, 5.18471647514324138086839513350, 5.76071479032182738164383061399, 6.67664847513532635198327944940, 7.46098434412460710736999700070, 8.390077121471355053278739533051

Graph of the $Z$-function along the critical line