L(s) = 1 | + (−1 + 2i)5-s − 4i·7-s − 11-s − 6i·13-s + 2i·17-s − 4·19-s − 6i·23-s + (−3 − 4i)25-s − 2·29-s + 8·31-s + (8 + 4i)35-s + 8i·37-s − 6·41-s + 12i·43-s + 10i·47-s + ⋯ |
L(s) = 1 | + (−0.447 + 0.894i)5-s − 1.51i·7-s − 0.301·11-s − 1.66i·13-s + 0.485i·17-s − 0.917·19-s − 1.25i·23-s + (−0.600 − 0.800i)25-s − 0.371·29-s + 1.43·31-s + (1.35 + 0.676i)35-s + 1.31i·37-s − 0.937·41-s + 1.82i·43-s + 1.45i·47-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(−0.894−0.447i)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)(−0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
−0.894−0.447i
|
Analytic conductor: |
31.6207 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(3169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 3960, ( :1/2), −0.894−0.447i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1−2i)T |
| 11 | 1+T |
good | 7 | 1+4iT−7T2 |
| 13 | 1+6iT−13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−8iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−12iT−43T2 |
| 47 | 1−10iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1+10T+61T2 |
| 67 | 1+2iT−67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1−2iT−73T2 |
| 79 | 1+4T+79T2 |
| 83 | 1−4iT−83T2 |
| 89 | 1+14T+89T2 |
| 97 | 1−4iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.094005497106503424522686677155, −7.38423699253185673021647901859, −6.52940496700225220335212698709, −6.12650605190121258613463840327, −4.76669528937552966059545611232, −4.24087541192893065647347719401, −3.25374408795945736250518516221, −2.71120007214133344256004293538, −1.14268767624092829376826341943, 0,
1.69763026056002695589171623761, 2.34095725083537300450962399157, 3.58617630609164311183359368232, 4.41388260512417558592231944777, 5.18471647514324138086839513350, 5.76071479032182738164383061399, 6.67664847513532635198327944940, 7.46098434412460710736999700070, 8.390077121471355053278739533051