Properties

Label 2-3960-5.4-c1-0-42
Degree $2$
Conductor $3960$
Sign $0.894 + 0.447i$
Analytic cond. $31.6207$
Root an. cond. $5.62323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − 2i)5-s + 2i·7-s + 11-s + 4i·17-s − 4·19-s − 6i·23-s + (−3 − 4i)25-s + 2·29-s + 8·31-s + (4 + 2i)35-s − 4i·37-s + 6·41-s + 6i·43-s + 2i·47-s + 3·49-s + ⋯
L(s)  = 1  + (0.447 − 0.894i)5-s + 0.755i·7-s + 0.301·11-s + 0.970i·17-s − 0.917·19-s − 1.25i·23-s + (−0.600 − 0.800i)25-s + 0.371·29-s + 1.43·31-s + (0.676 + 0.338i)35-s − 0.657i·37-s + 0.937·41-s + 0.914i·43-s + 0.291i·47-s + 0.428·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3960 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3960\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(31.6207\)
Root analytic conductor: \(5.62323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3960} (3169, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3960,\ (\ :1/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.064612533\)
\(L(\frac12)\) \(\approx\) \(2.064612533\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-1 + 2i)T \)
11 \( 1 - T \)
good7 \( 1 - 2iT - 7T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 4iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + 6iT - 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 + 4iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 6iT - 43T^{2} \)
47 \( 1 - 2iT - 47T^{2} \)
53 \( 1 + 12iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 14T + 61T^{2} \)
67 \( 1 - 10iT - 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 4iT - 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 2iT - 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.561690076916054853886704956183, −7.969278943331290246984175117134, −6.68899086485885057007120434305, −6.17149480136203216358665343108, −5.48925641320362647852716259597, −4.58221927067700631649930411133, −4.02440603694632319159604924134, −2.65791307822691878667918729706, −1.95780733126578720706026041785, −0.76682447496435372864109877362, 0.913959038410848158142972276161, 2.15097134920176642783220814059, 3.00571192406293325630737643907, 3.86762120371455746166277772484, 4.67497077699503002441332596121, 5.66882303551193056114112541739, 6.39804456224879840857164182770, 7.07471794438814770083035953668, 7.56380120870672226378041199914, 8.509151204991037720525387181518

Graph of the $Z$-function along the critical line