L(s) = 1 | + (1 − 2i)5-s + 2i·7-s + 11-s + 4i·17-s − 4·19-s − 6i·23-s + (−3 − 4i)25-s + 2·29-s + 8·31-s + (4 + 2i)35-s − 4i·37-s + 6·41-s + 6i·43-s + 2i·47-s + 3·49-s + ⋯ |
L(s) = 1 | + (0.447 − 0.894i)5-s + 0.755i·7-s + 0.301·11-s + 0.970i·17-s − 0.917·19-s − 1.25i·23-s + (−0.600 − 0.800i)25-s + 0.371·29-s + 1.43·31-s + (0.676 + 0.338i)35-s − 0.657i·37-s + 0.937·41-s + 0.914i·43-s + 0.291i·47-s + 0.428·49-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.894+0.447i)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
31.6207 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(3169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :1/2), 0.894+0.447i)
|
Particular Values
L(1) |
≈ |
2.064612533 |
L(21) |
≈ |
2.064612533 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−1+2i)T |
| 11 | 1−T |
good | 7 | 1−2iT−7T2 |
| 13 | 1−13T2 |
| 17 | 1−4iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1+4iT−37T2 |
| 41 | 1−6T+41T2 |
| 43 | 1−6iT−43T2 |
| 47 | 1−2iT−47T2 |
| 53 | 1+12iT−53T2 |
| 59 | 1−4T+59T2 |
| 61 | 1−14T+61T2 |
| 67 | 1−10iT−67T2 |
| 71 | 1+8T+71T2 |
| 73 | 1+4iT−73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1−2iT−83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.561690076916054853886704956183, −7.969278943331290246984175117134, −6.68899086485885057007120434305, −6.17149480136203216358665343108, −5.48925641320362647852716259597, −4.58221927067700631649930411133, −4.02440603694632319159604924134, −2.65791307822691878667918729706, −1.95780733126578720706026041785, −0.76682447496435372864109877362,
0.913959038410848158142972276161, 2.15097134920176642783220814059, 3.00571192406293325630737643907, 3.86762120371455746166277772484, 4.67497077699503002441332596121, 5.66882303551193056114112541739, 6.39804456224879840857164182770, 7.07471794438814770083035953668, 7.56380120870672226378041199914, 8.509151204991037720525387181518