L(s) = 1 | + (2.23 + 0.119i)5-s − 0.415i·7-s − 11-s − 4i·13-s + 6.51i·17-s − 5.20·19-s + 8.54i·23-s + (4.97 + 0.535i)25-s + 0.895·29-s − 6.73·31-s + (0.0498 − 0.928i)35-s + 8.96i·37-s − 10.0·41-s + 4.78i·43-s − 5.61i·47-s + ⋯ |
L(s) = 1 | + (0.998 + 0.0536i)5-s − 0.157i·7-s − 0.301·11-s − 1.10i·13-s + 1.58i·17-s − 1.19·19-s + 1.78i·23-s + (0.994 + 0.107i)25-s + 0.166·29-s − 1.21·31-s + (0.00843 − 0.156i)35-s + 1.47i·37-s − 1.57·41-s + 0.730i·43-s − 0.819i·47-s + ⋯ |
Λ(s)=(=(3960s/2ΓC(s)L(s)(0.0536−0.998i)Λ(2−s)
Λ(s)=(=(3960s/2ΓC(s+1/2)L(s)(0.0536−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
3960
= 23⋅32⋅5⋅11
|
Sign: |
0.0536−0.998i
|
Analytic conductor: |
31.6207 |
Root analytic conductor: |
5.62323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3960(3169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3960, ( :1/2), 0.0536−0.998i)
|
Particular Values
L(1) |
≈ |
1.634794409 |
L(21) |
≈ |
1.634794409 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−2.23−0.119i)T |
| 11 | 1+T |
good | 7 | 1+0.415iT−7T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1−6.51iT−17T2 |
| 19 | 1+5.20T+19T2 |
| 23 | 1−8.54iT−23T2 |
| 29 | 1−0.895T+29T2 |
| 31 | 1+6.73T+31T2 |
| 37 | 1−8.96iT−37T2 |
| 41 | 1+10.0T+41T2 |
| 43 | 1−4.78iT−43T2 |
| 47 | 1+5.61iT−47T2 |
| 53 | 1−10.0iT−53T2 |
| 59 | 1+1.63T+59T2 |
| 61 | 1−7.10T+61T2 |
| 67 | 1−10.6iT−67T2 |
| 71 | 1−6.19T+71T2 |
| 73 | 1+3.16iT−73T2 |
| 79 | 1−11.2T+79T2 |
| 83 | 1−16.2iT−83T2 |
| 89 | 1−9.56T+89T2 |
| 97 | 1−0.591iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.522349203719269741357099414061, −8.063027510291093673192468504113, −7.10173894331921877230091625946, −6.33154047543563406544675224907, −5.65154420082021745540229587509, −5.12750095939635252067925756847, −3.95623531235698856496547328772, −3.18307526867450662254830684866, −2.11619627420082472966996040053, −1.30453562676828394749474654898,
0.44695352635021610572848223366, 2.05063792793275134268592518253, 2.37248300343948635690673821521, 3.64350898320535029479252731615, 4.71066380048728573294697544424, 5.17399976338723382185555381468, 6.19302297176091863006783623525, 6.71909097768333334821920630110, 7.38928328018178246893432168679, 8.562430904056195594316314626142