L(s) = 1 | + 17.1·5-s − 23.1·7-s − 11·11-s − 59.6·13-s − 80.8·17-s − 11.7·19-s − 56.0·23-s + 168.·25-s − 85.4·29-s − 99.8·31-s − 396.·35-s + 402.·37-s + 27.0·41-s − 74·43-s − 408.·47-s + 192.·49-s + 463.·53-s − 188.·55-s − 498.·59-s − 635.·61-s − 1.02e3·65-s − 701.·67-s + 27.7·71-s + 619.·73-s + 254.·77-s − 208.·79-s − 1.30e3·83-s + ⋯ |
L(s) = 1 | + 1.53·5-s − 1.24·7-s − 0.301·11-s − 1.27·13-s − 1.15·17-s − 0.141·19-s − 0.508·23-s + 1.34·25-s − 0.547·29-s − 0.578·31-s − 1.91·35-s + 1.79·37-s + 0.103·41-s − 0.262·43-s − 1.26·47-s + 0.560·49-s + 1.20·53-s − 0.462·55-s − 1.10·59-s − 1.33·61-s − 1.95·65-s − 1.27·67-s + 0.0463·71-s + 0.993·73-s + 0.376·77-s − 0.296·79-s − 1.72·83-s + ⋯ |
Λ(s)=(=(396s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(396s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 11 | 1+11T |
good | 5 | 1−17.1T+125T2 |
| 7 | 1+23.1T+343T2 |
| 13 | 1+59.6T+2.19e3T2 |
| 17 | 1+80.8T+4.91e3T2 |
| 19 | 1+11.7T+6.85e3T2 |
| 23 | 1+56.0T+1.21e4T2 |
| 29 | 1+85.4T+2.43e4T2 |
| 31 | 1+99.8T+2.97e4T2 |
| 37 | 1−402.T+5.06e4T2 |
| 41 | 1−27.0T+6.89e4T2 |
| 43 | 1+74T+7.95e4T2 |
| 47 | 1+408.T+1.03e5T2 |
| 53 | 1−463.T+1.48e5T2 |
| 59 | 1+498.T+2.05e5T2 |
| 61 | 1+635.T+2.26e5T2 |
| 67 | 1+701.T+3.00e5T2 |
| 71 | 1−27.7T+3.57e5T2 |
| 73 | 1−619.T+3.89e5T2 |
| 79 | 1+208.T+4.93e5T2 |
| 83 | 1+1.30e3T+5.71e5T2 |
| 89 | 1+1.39e3T+7.04e5T2 |
| 97 | 1−1.05e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05783308804332371999961816570, −9.691943699057387933092912451342, −8.904757943762688612686988469143, −7.41064726322153901475281195952, −6.42913890955334638661628131567, −5.76781803290502380869367139818, −4.56896407020150818853070963648, −2.91448017618907003083281129995, −2.01237317689166792041705731153, 0,
2.01237317689166792041705731153, 2.91448017618907003083281129995, 4.56896407020150818853070963648, 5.76781803290502380869367139818, 6.42913890955334638661628131567, 7.41064726322153901475281195952, 8.904757943762688612686988469143, 9.691943699057387933092912451342, 10.05783308804332371999961816570