L(s) = 1 | − 30·3-s − 32·5-s + 657·9-s − 624·11-s + 708·13-s + 960·15-s − 934·17-s − 1.85e3·19-s − 1.12e3·23-s − 2.10e3·25-s − 1.24e4·27-s − 1.17e3·29-s − 2.90e3·31-s + 1.87e4·33-s − 1.24e4·37-s − 2.12e4·39-s − 2.66e3·41-s − 7.14e3·43-s − 2.10e4·45-s + 7.46e3·47-s + 2.80e4·51-s − 2.72e4·53-s + 1.99e4·55-s + 5.57e4·57-s − 2.49e3·59-s + 1.10e4·61-s − 2.26e4·65-s + ⋯ |
L(s) = 1 | − 1.92·3-s − 0.572·5-s + 2.70·9-s − 1.55·11-s + 1.16·13-s + 1.10·15-s − 0.783·17-s − 1.18·19-s − 0.441·23-s − 0.672·25-s − 3.27·27-s − 0.259·29-s − 0.543·31-s + 2.99·33-s − 1.49·37-s − 2.23·39-s − 0.247·41-s − 0.589·43-s − 1.54·45-s + 0.493·47-s + 1.50·51-s − 1.33·53-s + 0.890·55-s + 2.27·57-s − 0.0931·59-s + 0.381·61-s − 0.665·65-s + ⋯ |
Λ(s)=(=(392s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(392s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.1827233541 |
L(21) |
≈ |
0.1827233541 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+10pT+p5T2 |
| 5 | 1+32T+p5T2 |
| 11 | 1+624T+p5T2 |
| 13 | 1−708T+p5T2 |
| 17 | 1+934T+p5T2 |
| 19 | 1+1858T+p5T2 |
| 23 | 1+1120T+p5T2 |
| 29 | 1+1174T+p5T2 |
| 31 | 1+2908T+p5T2 |
| 37 | 1+12462T+p5T2 |
| 41 | 1+2662T+p5T2 |
| 43 | 1+7144T+p5T2 |
| 47 | 1−7468T+p5T2 |
| 53 | 1+27274T+p5T2 |
| 59 | 1+2490T+p5T2 |
| 61 | 1−11096T+p5T2 |
| 67 | 1−39756T+p5T2 |
| 71 | 1+69888T+p5T2 |
| 73 | 1+16450T+p5T2 |
| 79 | 1−78376T+p5T2 |
| 83 | 1+109818T+p5T2 |
| 89 | 1−56966T+p5T2 |
| 97 | 1−115946T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.80813680664656444905063034820, −10.04449151596136854410088847291, −8.519466127068020938121109254686, −7.48141516646993936153544621032, −6.49557287376772363880965973327, −5.70223509003890007831264735791, −4.80240215977684089515205691944, −3.83229749542496796609269453922, −1.80865514151602647500738204428, −0.24488004366244277408035544745,
0.24488004366244277408035544745, 1.80865514151602647500738204428, 3.83229749542496796609269453922, 4.80240215977684089515205691944, 5.70223509003890007831264735791, 6.49557287376772363880965973327, 7.48141516646993936153544621032, 8.519466127068020938121109254686, 10.04449151596136854410088847291, 10.80813680664656444905063034820