L(s) = 1 | − 30·3-s − 32·5-s + 657·9-s − 624·11-s + 708·13-s + 960·15-s − 934·17-s − 1.85e3·19-s − 1.12e3·23-s − 2.10e3·25-s − 1.24e4·27-s − 1.17e3·29-s − 2.90e3·31-s + 1.87e4·33-s − 1.24e4·37-s − 2.12e4·39-s − 2.66e3·41-s − 7.14e3·43-s − 2.10e4·45-s + 7.46e3·47-s + 2.80e4·51-s − 2.72e4·53-s + 1.99e4·55-s + 5.57e4·57-s − 2.49e3·59-s + 1.10e4·61-s − 2.26e4·65-s + ⋯ |
L(s) = 1 | − 1.92·3-s − 0.572·5-s + 2.70·9-s − 1.55·11-s + 1.16·13-s + 1.10·15-s − 0.783·17-s − 1.18·19-s − 0.441·23-s − 0.672·25-s − 3.27·27-s − 0.259·29-s − 0.543·31-s + 2.99·33-s − 1.49·37-s − 2.23·39-s − 0.247·41-s − 0.589·43-s − 1.54·45-s + 0.493·47-s + 1.50·51-s − 1.33·53-s + 0.890·55-s + 2.27·57-s − 0.0931·59-s + 0.381·61-s − 0.665·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.1827233541\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1827233541\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 10 p T + p^{5} T^{2} \) |
| 5 | \( 1 + 32 T + p^{5} T^{2} \) |
| 11 | \( 1 + 624 T + p^{5} T^{2} \) |
| 13 | \( 1 - 708 T + p^{5} T^{2} \) |
| 17 | \( 1 + 934 T + p^{5} T^{2} \) |
| 19 | \( 1 + 1858 T + p^{5} T^{2} \) |
| 23 | \( 1 + 1120 T + p^{5} T^{2} \) |
| 29 | \( 1 + 1174 T + p^{5} T^{2} \) |
| 31 | \( 1 + 2908 T + p^{5} T^{2} \) |
| 37 | \( 1 + 12462 T + p^{5} T^{2} \) |
| 41 | \( 1 + 2662 T + p^{5} T^{2} \) |
| 43 | \( 1 + 7144 T + p^{5} T^{2} \) |
| 47 | \( 1 - 7468 T + p^{5} T^{2} \) |
| 53 | \( 1 + 27274 T + p^{5} T^{2} \) |
| 59 | \( 1 + 2490 T + p^{5} T^{2} \) |
| 61 | \( 1 - 11096 T + p^{5} T^{2} \) |
| 67 | \( 1 - 39756 T + p^{5} T^{2} \) |
| 71 | \( 1 + 69888 T + p^{5} T^{2} \) |
| 73 | \( 1 + 16450 T + p^{5} T^{2} \) |
| 79 | \( 1 - 78376 T + p^{5} T^{2} \) |
| 83 | \( 1 + 109818 T + p^{5} T^{2} \) |
| 89 | \( 1 - 56966 T + p^{5} T^{2} \) |
| 97 | \( 1 - 115946 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.80813680664656444905063034820, −10.04449151596136854410088847291, −8.519466127068020938121109254686, −7.48141516646993936153544621032, −6.49557287376772363880965973327, −5.70223509003890007831264735791, −4.80240215977684089515205691944, −3.83229749542496796609269453922, −1.80865514151602647500738204428, −0.24488004366244277408035544745,
0.24488004366244277408035544745, 1.80865514151602647500738204428, 3.83229749542496796609269453922, 4.80240215977684089515205691944, 5.70223509003890007831264735791, 6.49557287376772363880965973327, 7.48141516646993936153544621032, 8.519466127068020938121109254686, 10.04449151596136854410088847291, 10.80813680664656444905063034820