Properties

Label 2-392-1.1-c5-0-1
Degree $2$
Conductor $392$
Sign $1$
Analytic cond. $62.8704$
Root an. cond. $7.92908$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 30·3-s − 32·5-s + 657·9-s − 624·11-s + 708·13-s + 960·15-s − 934·17-s − 1.85e3·19-s − 1.12e3·23-s − 2.10e3·25-s − 1.24e4·27-s − 1.17e3·29-s − 2.90e3·31-s + 1.87e4·33-s − 1.24e4·37-s − 2.12e4·39-s − 2.66e3·41-s − 7.14e3·43-s − 2.10e4·45-s + 7.46e3·47-s + 2.80e4·51-s − 2.72e4·53-s + 1.99e4·55-s + 5.57e4·57-s − 2.49e3·59-s + 1.10e4·61-s − 2.26e4·65-s + ⋯
L(s)  = 1  − 1.92·3-s − 0.572·5-s + 2.70·9-s − 1.55·11-s + 1.16·13-s + 1.10·15-s − 0.783·17-s − 1.18·19-s − 0.441·23-s − 0.672·25-s − 3.27·27-s − 0.259·29-s − 0.543·31-s + 2.99·33-s − 1.49·37-s − 2.23·39-s − 0.247·41-s − 0.589·43-s − 1.54·45-s + 0.493·47-s + 1.50·51-s − 1.33·53-s + 0.890·55-s + 2.27·57-s − 0.0931·59-s + 0.381·61-s − 0.665·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(62.8704\)
Root analytic conductor: \(7.92908\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 392,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.1827233541\)
\(L(\frac12)\) \(\approx\) \(0.1827233541\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 10 p T + p^{5} T^{2} \)
5 \( 1 + 32 T + p^{5} T^{2} \)
11 \( 1 + 624 T + p^{5} T^{2} \)
13 \( 1 - 708 T + p^{5} T^{2} \)
17 \( 1 + 934 T + p^{5} T^{2} \)
19 \( 1 + 1858 T + p^{5} T^{2} \)
23 \( 1 + 1120 T + p^{5} T^{2} \)
29 \( 1 + 1174 T + p^{5} T^{2} \)
31 \( 1 + 2908 T + p^{5} T^{2} \)
37 \( 1 + 12462 T + p^{5} T^{2} \)
41 \( 1 + 2662 T + p^{5} T^{2} \)
43 \( 1 + 7144 T + p^{5} T^{2} \)
47 \( 1 - 7468 T + p^{5} T^{2} \)
53 \( 1 + 27274 T + p^{5} T^{2} \)
59 \( 1 + 2490 T + p^{5} T^{2} \)
61 \( 1 - 11096 T + p^{5} T^{2} \)
67 \( 1 - 39756 T + p^{5} T^{2} \)
71 \( 1 + 69888 T + p^{5} T^{2} \)
73 \( 1 + 16450 T + p^{5} T^{2} \)
79 \( 1 - 78376 T + p^{5} T^{2} \)
83 \( 1 + 109818 T + p^{5} T^{2} \)
89 \( 1 - 56966 T + p^{5} T^{2} \)
97 \( 1 - 115946 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.80813680664656444905063034820, −10.04449151596136854410088847291, −8.519466127068020938121109254686, −7.48141516646993936153544621032, −6.49557287376772363880965973327, −5.70223509003890007831264735791, −4.80240215977684089515205691944, −3.83229749542496796609269453922, −1.80865514151602647500738204428, −0.24488004366244277408035544745, 0.24488004366244277408035544745, 1.80865514151602647500738204428, 3.83229749542496796609269453922, 4.80240215977684089515205691944, 5.70223509003890007831264735791, 6.49557287376772363880965973327, 7.48141516646993936153544621032, 8.519466127068020938121109254686, 10.04449151596136854410088847291, 10.80813680664656444905063034820

Graph of the $Z$-function along the critical line