Properties

Label 2-392-1.1-c1-0-7
Degree $2$
Conductor $392$
Sign $1$
Analytic cond. $3.13013$
Root an. cond. $1.76921$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82·3-s + 2.82·5-s + 5.00·9-s − 4·11-s − 2.82·13-s + 8.00·15-s − 5.65·17-s − 2.82·19-s + 3.00·25-s + 5.65·27-s + 2·29-s − 5.65·31-s − 11.3·33-s + 10·37-s − 8.00·39-s + 5.65·41-s − 4·43-s + 14.1·45-s + 5.65·47-s − 16.0·51-s + 6·53-s − 11.3·55-s − 8.00·57-s − 2.82·59-s + 14.1·61-s − 8.00·65-s + 12·67-s + ⋯
L(s)  = 1  + 1.63·3-s + 1.26·5-s + 1.66·9-s − 1.20·11-s − 0.784·13-s + 2.06·15-s − 1.37·17-s − 0.648·19-s + 0.600·25-s + 1.08·27-s + 0.371·29-s − 1.01·31-s − 1.96·33-s + 1.64·37-s − 1.28·39-s + 0.883·41-s − 0.609·43-s + 2.10·45-s + 0.825·47-s − 2.24·51-s + 0.824·53-s − 1.52·55-s − 1.05·57-s − 0.368·59-s + 1.81·61-s − 0.992·65-s + 1.46·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(3.13013\)
Root analytic conductor: \(1.76921\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 392,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.455602122\)
\(L(\frac12)\) \(\approx\) \(2.455602122\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2.82T + 3T^{2} \)
5 \( 1 - 2.82T + 5T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 2.82T + 13T^{2} \)
17 \( 1 + 5.65T + 17T^{2} \)
19 \( 1 + 2.82T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 5.65T + 31T^{2} \)
37 \( 1 - 10T + 37T^{2} \)
41 \( 1 - 5.65T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 5.65T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 2.82T + 59T^{2} \)
61 \( 1 - 14.1T + 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + 14.1T + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 5.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02003112888352876795354260785, −10.06505285963591712916076259719, −9.445249646624673432647354616810, −8.648320943661838632975628604705, −7.77258515529897134687955321671, −6.75192047741729539144599946478, −5.44719222554173891922828470993, −4.21172775218603880989909672935, −2.58900169588139173158210362787, −2.19527274733034608976408563982, 2.19527274733034608976408563982, 2.58900169588139173158210362787, 4.21172775218603880989909672935, 5.44719222554173891922828470993, 6.75192047741729539144599946478, 7.77258515529897134687955321671, 8.648320943661838632975628604705, 9.445249646624673432647354616810, 10.06505285963591712916076259719, 11.02003112888352876795354260785

Graph of the $Z$-function along the critical line