L(s) = 1 | + (0.258 − 0.965i)3-s + (−0.707 + 1.22i)7-s + (−0.866 − 0.499i)9-s + (−0.258 + 0.965i)13-s + (−0.5 + 0.133i)19-s + (0.999 + i)21-s + (−0.707 + 0.707i)27-s + (−0.366 + 0.366i)31-s + (0.707 + 1.22i)37-s + (0.866 + 0.499i)39-s + (0.517 + 1.93i)43-s + (−0.499 − 0.866i)49-s + 0.517i·57-s + (0.866 − 1.5i)61-s + (1.22 − 0.707i)63-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)3-s + (−0.707 + 1.22i)7-s + (−0.866 − 0.499i)9-s + (−0.258 + 0.965i)13-s + (−0.5 + 0.133i)19-s + (0.999 + i)21-s + (−0.707 + 0.707i)27-s + (−0.366 + 0.366i)31-s + (0.707 + 1.22i)37-s + (0.866 + 0.499i)39-s + (0.517 + 1.93i)43-s + (−0.499 − 0.866i)49-s + 0.517i·57-s + (0.866 − 1.5i)61-s + (1.22 − 0.707i)63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.460 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.460 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8975587904\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8975587904\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.258 + 0.965i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.258 - 0.965i)T \) |
good | 7 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.133i)T + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 37 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.517 - 1.93i)T + (-0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 73 | \( 1 - 1.93iT - T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + (1.67 + 0.965i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.645949978602020784708998832480, −8.182380670924121703580803494195, −7.21676703816070271648482465378, −6.51691217048852436005374468699, −6.07247862048133570806715847094, −5.21842876192888050778135345402, −4.13948118737622220824478475730, −2.99998972541840131545285896991, −2.44509486613916016686017245140, −1.45741491811639052297024400714,
0.47712682134215214163684716853, 2.27851964547833208871529416944, 3.26228808758928766518866203563, 3.88233768197271912471939827042, 4.56142442366950327719208655041, 5.50765467029635302799739839445, 6.18870767936792696205533737753, 7.27696909885039036002986480240, 7.68775297338897325027394675031, 8.689121323573631855989577272538