L(s) = 1 | + (0.866 + 0.5i)3-s + (0.499 + 0.866i)9-s + (0.866 + 0.5i)13-s + (−1.5 + 0.866i)19-s + 0.999i·27-s + 1.73i·31-s + (0.499 + 0.866i)39-s + (1.73 − i)43-s + (0.5 − 0.866i)49-s − 1.73·57-s + (−0.5 − 0.866i)61-s + 1.73·73-s − 79-s + (−0.5 + 0.866i)81-s + (−0.866 + 1.49i)93-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)3-s + (0.499 + 0.866i)9-s + (0.866 + 0.5i)13-s + (−1.5 + 0.866i)19-s + 0.999i·27-s + 1.73i·31-s + (0.499 + 0.866i)39-s + (1.73 − i)43-s + (0.5 − 0.866i)49-s − 1.73·57-s + (−0.5 − 0.866i)61-s + 1.73·73-s − 79-s + (−0.5 + 0.866i)81-s + (−0.866 + 1.49i)93-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.435 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.435 - 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.767355866\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.767355866\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.866 - 0.5i)T \) |
good | 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - 1.73iT - T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-1.73 + i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 - 1.73T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.661264276142602446437422293834, −8.351524413551270593406848485267, −7.40317154976049672688686595165, −6.64468014221597174181497579896, −5.81600619371402778365857783434, −4.85554067116649025387767333783, −4.03231212777214030345700187017, −3.51449201156394624839295351723, −2.40832455888900783305751058713, −1.56804790254986706114021683889,
0.948652372340011263077052331377, 2.19279596936946163358495792563, 2.84701478535461710262618426207, 3.92117154666021487542894792022, 4.45599700101033301715028446394, 5.81171124675168225810557109275, 6.32399483767103642117659951307, 7.16495357694549285213844468114, 7.902290504622424974867690784667, 8.437581457814318703182493781162