L(s) = 1 | + (0.5 + 0.866i)3-s + (−2.65 − 1.53i)7-s + (−0.499 + 0.866i)9-s + (1.31 − 0.758i)11-s + (−3.22 + 1.60i)13-s + (−0.193 + 0.335i)17-s + (0.595 + 0.343i)19-s − 3.06i·21-s + (−1.64 − 2.85i)23-s − 0.999·27-s + (4.84 + 8.39i)29-s − 5.19i·31-s + (1.31 + 0.758i)33-s + (4.76 − 2.75i)37-s + (−3.00 − 1.99i)39-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−1.00 − 0.579i)7-s + (−0.166 + 0.288i)9-s + (0.396 − 0.228i)11-s + (−0.895 + 0.445i)13-s + (−0.0470 + 0.0814i)17-s + (0.136 + 0.0788i)19-s − 0.669i·21-s + (−0.343 − 0.595i)23-s − 0.192·27-s + (0.900 + 1.55i)29-s − 0.932i·31-s + (0.228 + 0.132i)33-s + (0.783 − 0.452i)37-s + (−0.481 − 0.319i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.581473027\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.581473027\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.22 - 1.60i)T \) |
good | 7 | \( 1 + (2.65 + 1.53i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.31 + 0.758i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.193 - 0.335i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.595 - 0.343i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.64 + 2.85i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.84 - 8.39i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 5.19iT - 31T^{2} \) |
| 37 | \( 1 + (-4.76 + 2.75i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.27 + 1.89i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.69 - 2.94i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 1.47iT - 47T^{2} \) |
| 53 | \( 1 - 0.937T + 53T^{2} \) |
| 59 | \( 1 + (-3.14 - 1.81i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.05 + 5.28i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-13.1 + 7.60i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.2 - 5.89i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 0.698iT - 73T^{2} \) |
| 79 | \( 1 + 4.96T + 79T^{2} \) |
| 83 | \( 1 + 2.56iT - 83T^{2} \) |
| 89 | \( 1 + (-8.80 + 5.08i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-11.4 - 6.61i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.545787166049891831387772914232, −7.74909516133191830723212566629, −6.89216719718597695249549337177, −6.42617581695828757137765035442, −5.41476704788144271999373724550, −4.53176899155795981412113880133, −3.84043094690216038192394296988, −3.07703306798439193327957245086, −2.14760482156658383413397377793, −0.61655419510718887611013863000,
0.78565559274312532724037502964, 2.19845302988935808712899655944, 2.83287701501737502656286343698, 3.70505472588850745940153772947, 4.73238198961860470650863401841, 5.65625139990096815408062326619, 6.36256779268648437288126472831, 6.96193296414297679901682795524, 7.77338143301783281240201893453, 8.404487611451155392705211688051