L(s) = 1 | + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)9-s + (−0.633 + 0.366i)11-s + (−0.232 + 3.59i)13-s + (3.09 − 5.36i)17-s + (−1.96 − 1.13i)19-s + (2.36 + 4.09i)23-s + 0.999·27-s + (−0.267 − 0.464i)29-s + 2.26i·31-s + (0.633 + 0.366i)33-s + (−9.92 + 5.73i)37-s + (3.23 − 1.59i)39-s + (−3.63 + 2.09i)41-s + (5.19 − 9i)43-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (−0.166 + 0.288i)9-s + (−0.191 + 0.110i)11-s + (−0.0643 + 0.997i)13-s + (0.751 − 1.30i)17-s + (−0.450 − 0.260i)19-s + (0.493 + 0.854i)23-s + 0.192·27-s + (−0.0497 − 0.0861i)29-s + 0.407i·31-s + (0.110 + 0.0637i)33-s + (−1.63 + 0.942i)37-s + (0.517 − 0.255i)39-s + (−0.567 + 0.327i)41-s + (0.792 − 1.37i)43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.565 - 0.824i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.565 - 0.824i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.221920224\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.221920224\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (0.232 - 3.59i)T \) |
good | 7 | \( 1 + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.633 - 0.366i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.09 + 5.36i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.96 + 1.13i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.36 - 4.09i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.267 + 0.464i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 2.26iT - 31T^{2} \) |
| 37 | \( 1 + (9.92 - 5.73i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.63 - 2.09i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.19 + 9i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 10.7iT - 47T^{2} \) |
| 53 | \( 1 - 11.1T + 53T^{2} \) |
| 59 | \( 1 + (6.46 + 3.73i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.767 - 1.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.66 + 3.26i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-6.29 - 3.63i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 14.6iT - 73T^{2} \) |
| 79 | \( 1 - 3.53T + 79T^{2} \) |
| 83 | \( 1 - 13.8iT - 83T^{2} \) |
| 89 | \( 1 + (14.6 - 8.46i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.03 + 0.598i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.566915912429311597178052431315, −7.74414467732089395673389687626, −6.95189213839669190229636027510, −6.67951676325563618191873112215, −5.43248512655145610512660420682, −5.07668267734311666524581005555, −4.00129974170401153366244512189, −3.01859353476352280969019355301, −2.06741053988039637159924062180, −1.02447075461639494447631887865,
0.42216963008231358817432633642, 1.79312462964953995064392478718, 3.00112302406036522404887851653, 3.72574084880730358930376434165, 4.57210549424601273942465371720, 5.48926150437049839847622746220, 5.93254144710971937105288836820, 6.83414542746911399741314127813, 7.74319423430390144546918212292, 8.391322565640317762726624640187