L(s) = 1 | + (−0.5 − 0.866i)3-s + (3.94 + 2.27i)7-s + (−0.499 + 0.866i)9-s + (−3.76 + 2.17i)11-s + (−2.02 − 2.98i)13-s + (−1 + 1.73i)17-s + (2.53 + 1.46i)19-s − 4.55i·21-s + (−1.34 − 2.33i)23-s + 0.999·27-s + (1.72 + 2.98i)29-s − 1.62i·31-s + (3.76 + 2.17i)33-s + (3.76 − 2.17i)37-s + (−1.56 + 3.24i)39-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (1.48 + 0.860i)7-s + (−0.166 + 0.288i)9-s + (−1.13 + 0.654i)11-s + (−0.561 − 0.827i)13-s + (−0.242 + 0.420i)17-s + (0.581 + 0.336i)19-s − 0.993i·21-s + (−0.280 − 0.485i)23-s + 0.192·27-s + (0.320 + 0.554i)29-s − 0.291i·31-s + (0.654 + 0.378i)33-s + (0.618 − 0.356i)37-s + (−0.251 + 0.519i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0602 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0602 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.219876163\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.219876163\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (2.02 + 2.98i)T \) |
good | 7 | \( 1 + (-3.94 - 2.27i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (3.76 - 2.17i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1 - 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.53 - 1.46i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.34 + 2.33i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.72 - 2.98i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.62iT - 31T^{2} \) |
| 37 | \( 1 + (-3.76 + 2.17i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.44 - 1.41i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.25 - 3.89i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 12.5iT - 47T^{2} \) |
| 53 | \( 1 - 1.44T + 53T^{2} \) |
| 59 | \( 1 + (8.15 + 4.71i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.71 + 6.43i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.50 + 0.870i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.68 + 0.974i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 13.6iT - 73T^{2} \) |
| 79 | \( 1 + 9.07T + 79T^{2} \) |
| 83 | \( 1 - 17.2iT - 83T^{2} \) |
| 89 | \( 1 + (0.445 - 0.257i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.16 - 1.25i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.281627272956584179279758166036, −7.987252624396021488685952386653, −7.44934044109434877968535325425, −6.39271961386608328065964321627, −5.49184915891645379251316572449, −5.10433659040996759648573479901, −4.37432131456982771434599794073, −2.85195225290265729836688168108, −2.23356941260104009803109644383, −1.26947324953158826200750997918,
0.36977913907121264817995874947, 1.65182823593452839221580048696, 2.72534196772433018471203476138, 3.82003146610184726037092439468, 4.66733157931769639218572170586, 5.06640381922548739049736500946, 5.86110432275373120873001659770, 7.03234635134671753528418136374, 7.51499197882569214620190086303, 8.281166757225108260699818511945