L(s) = 1 | + (0.5 + 0.866i)3-s + (−3.40 − 1.96i)7-s + (−0.499 + 0.866i)9-s + (−1.14 + 0.658i)11-s + (−1.86 − 3.08i)13-s + (0.276 − 0.478i)17-s + (4.69 + 2.71i)19-s − 3.93i·21-s + (0.237 + 0.411i)23-s − 0.999·27-s + (1.53 + 2.66i)29-s − 3.49i·31-s + (−1.14 − 0.658i)33-s + (−0.407 + 0.235i)37-s + (1.74 − 3.15i)39-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−1.28 − 0.743i)7-s + (−0.166 + 0.288i)9-s + (−0.344 + 0.198i)11-s + (−0.516 − 0.856i)13-s + (0.0670 − 0.116i)17-s + (1.07 + 0.622i)19-s − 0.858i·21-s + (0.0495 + 0.0858i)23-s − 0.192·27-s + (0.285 + 0.495i)29-s − 0.628i·31-s + (−0.198 − 0.114i)33-s + (−0.0669 + 0.0386i)37-s + (0.279 − 0.505i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00641 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.00641 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.126003698\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.126003698\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (1.86 + 3.08i)T \) |
good | 7 | \( 1 + (3.40 + 1.96i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.14 - 0.658i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.276 + 0.478i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4.69 - 2.71i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.237 - 0.411i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.53 - 2.66i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 3.49iT - 31T^{2} \) |
| 37 | \( 1 + (0.407 - 0.235i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.53 + 1.46i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.697 - 1.20i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 7.71iT - 47T^{2} \) |
| 53 | \( 1 + 3.43T + 53T^{2} \) |
| 59 | \( 1 + (-11.2 - 6.50i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.313 + 0.542i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (11.0 - 6.37i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (4.51 + 2.60i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 6.95iT - 73T^{2} \) |
| 79 | \( 1 - 1.19T + 79T^{2} \) |
| 83 | \( 1 - 12.9iT - 83T^{2} \) |
| 89 | \( 1 + (15.5 - 8.95i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.54 - 2.62i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.777059770140523112408046165537, −7.67937619539275602996391081830, −7.44980061787250512831258343408, −6.43000971073406276309042680245, −5.65427364241300805953552412116, −4.87773098319819880186187243483, −3.90757830391030393906868177708, −3.24252718899186789632321650842, −2.56397831491552839003405221624, −0.953003913406273693413203856270,
0.36953611829227979198718439412, 1.86059935427475747403405574777, 2.81128772198957726769084553441, 3.32234894893631824508133535938, 4.49558478426547441870686959947, 5.46119981669050370152160332966, 6.13714367780032557025648087465, 6.91794472301122201808899530864, 7.35991420396936599085655731341, 8.441379960131658240533680098892