Properties

Label 2-3900-1.1-c1-0-4
Degree $2$
Conductor $3900$
Sign $1$
Analytic cond. $31.1416$
Root an. cond. $5.58047$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 4.44·11-s + 13-s − 2·17-s − 2.89·19-s + 2·21-s − 4.89·23-s − 27-s − 2·29-s + 6.89·31-s − 4.44·33-s − 1.10·37-s − 39-s + 8.44·41-s + 11.7·43-s + 9.34·47-s − 3·49-s + 2·51-s − 6.89·53-s + 2.89·57-s + 0.449·59-s + 4·61-s − 2·63-s − 11.7·67-s + 4.89·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 0.333·9-s + 1.34·11-s + 0.277·13-s − 0.485·17-s − 0.665·19-s + 0.436·21-s − 1.02·23-s − 0.192·27-s − 0.371·29-s + 1.23·31-s − 0.774·33-s − 0.181·37-s − 0.160·39-s + 1.31·41-s + 1.79·43-s + 1.36·47-s − 0.428·49-s + 0.280·51-s − 0.947·53-s + 0.383·57-s + 0.0585·59-s + 0.512·61-s − 0.251·63-s − 1.44·67-s + 0.589·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(31.1416\)
Root analytic conductor: \(5.58047\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.335919049\)
\(L(\frac12)\) \(\approx\) \(1.335919049\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 2T + 7T^{2} \)
11 \( 1 - 4.44T + 11T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 + 2.89T + 19T^{2} \)
23 \( 1 + 4.89T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 6.89T + 31T^{2} \)
37 \( 1 + 1.10T + 37T^{2} \)
41 \( 1 - 8.44T + 41T^{2} \)
43 \( 1 - 11.7T + 43T^{2} \)
47 \( 1 - 9.34T + 47T^{2} \)
53 \( 1 + 6.89T + 53T^{2} \)
59 \( 1 - 0.449T + 59T^{2} \)
61 \( 1 - 4T + 61T^{2} \)
67 \( 1 + 11.7T + 67T^{2} \)
71 \( 1 + 10.2T + 71T^{2} \)
73 \( 1 + 11.7T + 73T^{2} \)
79 \( 1 - 10T + 79T^{2} \)
83 \( 1 - 3.55T + 83T^{2} \)
89 \( 1 + 13.3T + 89T^{2} \)
97 \( 1 + 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.619747459627172900448876458267, −7.60364581499820669415890773887, −6.86565175881940893733457626207, −6.07658630330822518229829618741, −5.91737464022652709821872792028, −4.39411577773291075150496672414, −4.14402545471620771880848372295, −3.01690221458898146023126220616, −1.87920303644199059329922466950, −0.68933917017972104997714686333, 0.68933917017972104997714686333, 1.87920303644199059329922466950, 3.01690221458898146023126220616, 4.14402545471620771880848372295, 4.39411577773291075150496672414, 5.91737464022652709821872792028, 6.07658630330822518229829618741, 6.86565175881940893733457626207, 7.60364581499820669415890773887, 8.619747459627172900448876458267

Graph of the $Z$-function along the critical line