Properties

Label 2-3900-1.1-c1-0-23
Degree $2$
Conductor $3900$
Sign $1$
Analytic cond. $31.1416$
Root an. cond. $5.58047$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4.77·7-s + 9-s + 4.77·11-s + 13-s + 4.77·17-s + 6·19-s + 4.77·21-s − 6.77·23-s + 27-s + 2·29-s + 6·31-s + 4.77·33-s − 4.77·37-s + 39-s − 8.77·41-s − 8·43-s − 6·47-s + 15.7·49-s + 4.77·51-s + 4.77·53-s + 6·57-s − 3.54·59-s − 4.77·61-s + 4.77·63-s − 7.54·67-s − 6.77·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.80·7-s + 0.333·9-s + 1.43·11-s + 0.277·13-s + 1.15·17-s + 1.37·19-s + 1.04·21-s − 1.41·23-s + 0.192·27-s + 0.371·29-s + 1.07·31-s + 0.830·33-s − 0.784·37-s + 0.160·39-s − 1.36·41-s − 1.21·43-s − 0.875·47-s + 2.25·49-s + 0.668·51-s + 0.655·53-s + 0.794·57-s − 0.461·59-s − 0.610·61-s + 0.601·63-s − 0.921·67-s − 0.815·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(31.1416\)
Root analytic conductor: \(5.58047\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.612574533\)
\(L(\frac12)\) \(\approx\) \(3.612574533\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 4.77T + 7T^{2} \)
11 \( 1 - 4.77T + 11T^{2} \)
17 \( 1 - 4.77T + 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 + 6.77T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 6T + 31T^{2} \)
37 \( 1 + 4.77T + 37T^{2} \)
41 \( 1 + 8.77T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + 6T + 47T^{2} \)
53 \( 1 - 4.77T + 53T^{2} \)
59 \( 1 + 3.54T + 59T^{2} \)
61 \( 1 + 4.77T + 61T^{2} \)
67 \( 1 + 7.54T + 67T^{2} \)
71 \( 1 + 10.3T + 71T^{2} \)
73 \( 1 + 10T + 73T^{2} \)
79 \( 1 - 1.22T + 79T^{2} \)
83 \( 1 + 7.54T + 83T^{2} \)
89 \( 1 - 4.77T + 89T^{2} \)
97 \( 1 + 10.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.402360782373956858328786957995, −7.87656392912426538060562426044, −7.21932988830234866506342368111, −6.27579344491861683473349057597, −5.37110869272206288758833574274, −4.64715454165012862846949776915, −3.86059844738386312988920356550, −3.05671997615694272464335478262, −1.64076033306419998682769096700, −1.33177132133500077326680996984, 1.33177132133500077326680996984, 1.64076033306419998682769096700, 3.05671997615694272464335478262, 3.86059844738386312988920356550, 4.64715454165012862846949776915, 5.37110869272206288758833574274, 6.27579344491861683473349057597, 7.21932988830234866506342368111, 7.87656392912426538060562426044, 8.402360782373956858328786957995

Graph of the $Z$-function along the critical line