Properties

Label 2-3900-1.1-c1-0-20
Degree $2$
Conductor $3900$
Sign $-1$
Analytic cond. $31.1416$
Root an. cond. $5.58047$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3.56·7-s + 9-s + 3.56·11-s + 13-s − 0.438·17-s − 8.24·19-s + 3.56·21-s + 4.68·23-s − 27-s + 8.24·29-s − 2·31-s − 3.56·33-s + 3.56·37-s − 39-s + 0.438·41-s − 6.24·43-s − 10·47-s + 5.68·49-s + 0.438·51-s + 7.56·53-s + 8.24·57-s + 2.87·59-s − 10.6·61-s − 3.56·63-s + 1.12·67-s − 4.68·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.34·7-s + 0.333·9-s + 1.07·11-s + 0.277·13-s − 0.106·17-s − 1.89·19-s + 0.777·21-s + 0.976·23-s − 0.192·27-s + 1.53·29-s − 0.359·31-s − 0.619·33-s + 0.585·37-s − 0.160·39-s + 0.0684·41-s − 0.952·43-s − 1.45·47-s + 0.812·49-s + 0.0613·51-s + 1.03·53-s + 1.09·57-s + 0.374·59-s − 1.36·61-s − 0.448·63-s + 0.137·67-s − 0.563·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(31.1416\)
Root analytic conductor: \(5.58047\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 + 3.56T + 7T^{2} \)
11 \( 1 - 3.56T + 11T^{2} \)
17 \( 1 + 0.438T + 17T^{2} \)
19 \( 1 + 8.24T + 19T^{2} \)
23 \( 1 - 4.68T + 23T^{2} \)
29 \( 1 - 8.24T + 29T^{2} \)
31 \( 1 + 2T + 31T^{2} \)
37 \( 1 - 3.56T + 37T^{2} \)
41 \( 1 - 0.438T + 41T^{2} \)
43 \( 1 + 6.24T + 43T^{2} \)
47 \( 1 + 10T + 47T^{2} \)
53 \( 1 - 7.56T + 53T^{2} \)
59 \( 1 - 2.87T + 59T^{2} \)
61 \( 1 + 10.6T + 61T^{2} \)
67 \( 1 - 1.12T + 67T^{2} \)
71 \( 1 - 5.80T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 7.80T + 79T^{2} \)
83 \( 1 + 1.12T + 83T^{2} \)
89 \( 1 + 16.9T + 89T^{2} \)
97 \( 1 + 5.80T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.248028442089357266429739074484, −7.02061161414103408353440309145, −6.41813489225411083203969035449, −6.30072273783403590111937005310, −5.09054405683509960779386643549, −4.23917904648596301707728496570, −3.52932014701875324878094094953, −2.54538503513327379040226315354, −1.24917419583378736495346271871, 0, 1.24917419583378736495346271871, 2.54538503513327379040226315354, 3.52932014701875324878094094953, 4.23917904648596301707728496570, 5.09054405683509960779386643549, 6.30072273783403590111937005310, 6.41813489225411083203969035449, 7.02061161414103408353440309145, 8.248028442089357266429739074484

Graph of the $Z$-function along the critical line