Properties

Label 2-3900-1.1-c1-0-13
Degree $2$
Conductor $3900$
Sign $1$
Analytic cond. $31.1416$
Root an. cond. $5.58047$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4.95·7-s + 9-s − 3.69·11-s − 13-s − 6.38·17-s + 1.25·19-s + 4.95·21-s − 2.64·23-s + 27-s + 5.51·29-s + 9.08·31-s − 3.69·33-s + 6.13·37-s − 39-s + 4.13·41-s + 2.74·43-s + 0.436·47-s + 17.5·49-s − 6.38·51-s + 11.1·53-s + 1.25·57-s + 7.82·59-s − 1.87·61-s + 4.95·63-s + 13.5·67-s − 2.64·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.87·7-s + 0.333·9-s − 1.11·11-s − 0.277·13-s − 1.54·17-s + 0.288·19-s + 1.08·21-s − 0.551·23-s + 0.192·27-s + 1.02·29-s + 1.63·31-s − 0.643·33-s + 1.00·37-s − 0.160·39-s + 0.645·41-s + 0.418·43-s + 0.0636·47-s + 2.50·49-s − 0.894·51-s + 1.52·53-s + 0.166·57-s + 1.01·59-s − 0.239·61-s + 0.623·63-s + 1.66·67-s − 0.318·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(31.1416\)
Root analytic conductor: \(5.58047\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.807350874\)
\(L(\frac12)\) \(\approx\) \(2.807350874\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4.95T + 7T^{2} \)
11 \( 1 + 3.69T + 11T^{2} \)
17 \( 1 + 6.38T + 17T^{2} \)
19 \( 1 - 1.25T + 19T^{2} \)
23 \( 1 + 2.64T + 23T^{2} \)
29 \( 1 - 5.51T + 29T^{2} \)
31 \( 1 - 9.08T + 31T^{2} \)
37 \( 1 - 6.13T + 37T^{2} \)
41 \( 1 - 4.13T + 41T^{2} \)
43 \( 1 - 2.74T + 43T^{2} \)
47 \( 1 - 0.436T + 47T^{2} \)
53 \( 1 - 11.1T + 53T^{2} \)
59 \( 1 - 7.82T + 59T^{2} \)
61 \( 1 + 1.87T + 61T^{2} \)
67 \( 1 - 13.5T + 67T^{2} \)
71 \( 1 + 16.0T + 71T^{2} \)
73 \( 1 - 9.77T + 73T^{2} \)
79 \( 1 + 8.03T + 79T^{2} \)
83 \( 1 - 7.04T + 83T^{2} \)
89 \( 1 - 11.9T + 89T^{2} \)
97 \( 1 + 7.38T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.383786428553590850581549732500, −7.88378854883164073403091096451, −7.27783263242604418412515333875, −6.28690897517096058621486064543, −5.25539255378011304124774106272, −4.64874469636663531875803061967, −4.10185514710534561702530070642, −2.55935382006926285289404072965, −2.26969782497205589644648752694, −0.969080094749957779203795261490, 0.969080094749957779203795261490, 2.26969782497205589644648752694, 2.55935382006926285289404072965, 4.10185514710534561702530070642, 4.64874469636663531875803061967, 5.25539255378011304124774106272, 6.28690897517096058621486064543, 7.27783263242604418412515333875, 7.88378854883164073403091096451, 8.383786428553590850581549732500

Graph of the $Z$-function along the critical line