L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.866 − 0.5i)3-s + (−0.499 − 0.866i)4-s + (1.26 + 1.84i)5-s + (0.866 − 0.499i)6-s + (−2.17 − 3.76i)7-s + 0.999·8-s + (0.499 + 0.866i)9-s + (−2.22 + 0.178i)10-s + (−2.04 − 1.17i)11-s + 0.999i·12-s + (−3.18 − 1.69i)13-s + 4.34·14-s + (−0.178 − 2.22i)15-s + (−0.5 + 0.866i)16-s + (2.60 − 1.50i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.499 − 0.288i)3-s + (−0.249 − 0.433i)4-s + (0.567 + 0.823i)5-s + (0.353 − 0.204i)6-s + (−0.821 − 1.42i)7-s + 0.353·8-s + (0.166 + 0.288i)9-s + (−0.704 + 0.0563i)10-s + (−0.615 − 0.355i)11-s + 0.288i·12-s + (−0.883 − 0.469i)13-s + 1.16·14-s + (−0.0459 − 0.575i)15-s + (−0.125 + 0.216i)16-s + (0.631 − 0.364i)17-s + ⋯ |
Λ(s)=(=(390s/2ΓC(s)L(s)(0.127+0.991i)Λ(2−s)
Λ(s)=(=(390s/2ΓC(s+1/2)L(s)(0.127+0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
390
= 2⋅3⋅5⋅13
|
Sign: |
0.127+0.991i
|
Analytic conductor: |
3.11416 |
Root analytic conductor: |
1.76469 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ390(199,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 390, ( :1/2), 0.127+0.991i)
|
Particular Values
L(1) |
≈ |
0.439328−0.386460i |
L(21) |
≈ |
0.439328−0.386460i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1+(0.866+0.5i)T |
| 5 | 1+(−1.26−1.84i)T |
| 13 | 1+(3.18+1.69i)T |
good | 7 | 1+(2.17+3.76i)T+(−3.5+6.06i)T2 |
| 11 | 1+(2.04+1.17i)T+(5.5+9.52i)T2 |
| 17 | 1+(−2.60+1.50i)T+(8.5−14.7i)T2 |
| 19 | 1+(−0.585+0.338i)T+(9.5−16.4i)T2 |
| 23 | 1+(5.58+3.22i)T+(11.5+19.9i)T2 |
| 29 | 1+(−4.82+8.35i)T+(−14.5−25.1i)T2 |
| 31 | 1+7.11iT−31T2 |
| 37 | 1+(−3.74+6.48i)T+(−18.5−32.0i)T2 |
| 41 | 1+(2.60+1.50i)T+(20.5+35.5i)T2 |
| 43 | 1+(5.91−3.41i)T+(21.5−37.2i)T2 |
| 47 | 1−5.61T+47T2 |
| 53 | 1−9.43iT−53T2 |
| 59 | 1+(4.56−2.63i)T+(29.5−51.0i)T2 |
| 61 | 1+(−2.15−3.73i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.91−5.04i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−2.52+1.45i)T+(35.5−61.4i)T2 |
| 73 | 1+7.67T+73T2 |
| 79 | 1+3.74T+79T2 |
| 83 | 1−10.3T+83T2 |
| 89 | 1+(−4.15−2.39i)T+(44.5+77.0i)T2 |
| 97 | 1+(8.17+14.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.71109617504674970876539528052, −10.15916638352330815746725625271, −9.640248955192947349365718590260, −7.83861970910049730257213569683, −7.38287668789310893529104093116, −6.38457298598746634983671582287, −5.70179462208914656363869880362, −4.23227505408380106987220355828, −2.66602949602715065844138439340, −0.44522657724787774130968135510,
1.84843441168044560255644499147, 3.15836002058783795694549406915, 4.84270354482072669378724094539, 5.51882273774921255350172985782, 6.65186088155334179099411705598, 8.179805733743700804553915571278, 9.044013287606965401288201406025, 9.819054857157749670881540932311, 10.28445355177561176020028081078, 11.81362523027541411414883973770