L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.58 − 0.707i)3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (1.61 − 0.618i)6-s + (0.707 + 0.707i)8-s + (2.00 + 2.23i)9-s − 1.00i·10-s + (1.41 + 1.41i)11-s + (−0.707 + 1.58i)12-s + (0.418 − 3.58i)13-s + (1.61 − 0.618i)15-s − 1.00·16-s − 7.30·17-s + (−2.99 − 0.166i)18-s + (−5.16 − 5.16i)19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.912 − 0.408i)3-s − 0.500i·4-s + (−0.316 + 0.316i)5-s + (0.660 − 0.252i)6-s + (0.250 + 0.250i)8-s + (0.666 + 0.745i)9-s − 0.316i·10-s + (0.426 + 0.426i)11-s + (−0.204 + 0.456i)12-s + (0.116 − 0.993i)13-s + (0.417 − 0.159i)15-s − 0.250·16-s − 1.77·17-s + (−0.706 − 0.0393i)18-s + (−1.18 − 1.18i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.738 + 0.674i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.738 + 0.674i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0571069 - 0.147272i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0571069 - 0.147272i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (1.58 + 0.707i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + (-0.418 + 3.58i)T \) |
good | 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 + (-1.41 - 1.41i)T + 11iT^{2} \) |
| 17 | \( 1 + 7.30T + 17T^{2} \) |
| 19 | \( 1 + (5.16 + 5.16i)T + 19iT^{2} \) |
| 23 | \( 1 + 4.47T + 23T^{2} \) |
| 29 | \( 1 - 4.47iT - 29T^{2} \) |
| 31 | \( 1 + (3 + 3i)T + 31iT^{2} \) |
| 37 | \( 1 + (4 - 4i)T - 37iT^{2} \) |
| 41 | \( 1 + (-2.23 + 2.23i)T - 41iT^{2} \) |
| 43 | \( 1 + 7.16iT - 43T^{2} \) |
| 47 | \( 1 + (7.30 + 7.30i)T + 47iT^{2} \) |
| 53 | \( 1 + 1.41iT - 53T^{2} \) |
| 59 | \( 1 + (5.88 + 5.88i)T + 59iT^{2} \) |
| 61 | \( 1 - 10.6T + 61T^{2} \) |
| 67 | \( 1 + (-7.16 - 7.16i)T + 67iT^{2} \) |
| 71 | \( 1 + (-3.87 + 3.87i)T - 71iT^{2} \) |
| 73 | \( 1 + (5.16 - 5.16i)T - 73iT^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 + (-5.65 + 5.65i)T - 83iT^{2} \) |
| 89 | \( 1 + (0.592 + 0.592i)T + 89iT^{2} \) |
| 97 | \( 1 + (1.16 + 1.16i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90191209445210660100492773787, −10.27031139681549510500757589569, −8.998514229484911037507261386764, −8.074995037883201708109391584395, −6.93361180419447513672259264674, −6.53702416903514063514953488713, −5.29935748258280637832674056373, −4.22620033361907259745018017533, −2.11985201196596893417599245391, −0.13265617460980325265062695341,
1.81314899718030458089601765233, 3.88715925731325827312995461161, 4.48641444094425686499075859946, 6.05820037415172688065487419600, 6.81269338436042885439814493699, 8.237116444239579725139441951724, 9.059668914600270527530384009008, 9.915981090677610777242798700949, 10.96491905749480010028692554956, 11.41095687713238982829668626139