L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.58 − 0.707i)3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (1.61 − 0.618i)6-s + (0.707 + 0.707i)8-s + (2.00 + 2.23i)9-s − 1.00i·10-s + (1.41 + 1.41i)11-s + (−0.707 + 1.58i)12-s + (0.418 − 3.58i)13-s + (1.61 − 0.618i)15-s − 1.00·16-s − 7.30·17-s + (−2.99 − 0.166i)18-s + (−5.16 − 5.16i)19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.912 − 0.408i)3-s − 0.500i·4-s + (−0.316 + 0.316i)5-s + (0.660 − 0.252i)6-s + (0.250 + 0.250i)8-s + (0.666 + 0.745i)9-s − 0.316i·10-s + (0.426 + 0.426i)11-s + (−0.204 + 0.456i)12-s + (0.116 − 0.993i)13-s + (0.417 − 0.159i)15-s − 0.250·16-s − 1.77·17-s + (−0.706 − 0.0393i)18-s + (−1.18 − 1.18i)19-s + ⋯ |
Λ(s)=(=(390s/2ΓC(s)L(s)(−0.738+0.674i)Λ(2−s)
Λ(s)=(=(390s/2ΓC(s+1/2)L(s)(−0.738+0.674i)Λ(1−s)
Degree: |
2 |
Conductor: |
390
= 2⋅3⋅5⋅13
|
Sign: |
−0.738+0.674i
|
Analytic conductor: |
3.11416 |
Root analytic conductor: |
1.76469 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ390(281,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 390, ( :1/2), −0.738+0.674i)
|
Particular Values
L(1) |
≈ |
0.0571069−0.147272i |
L(21) |
≈ |
0.0571069−0.147272i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1+(1.58+0.707i)T |
| 5 | 1+(0.707−0.707i)T |
| 13 | 1+(−0.418+3.58i)T |
good | 7 | 1−7iT2 |
| 11 | 1+(−1.41−1.41i)T+11iT2 |
| 17 | 1+7.30T+17T2 |
| 19 | 1+(5.16+5.16i)T+19iT2 |
| 23 | 1+4.47T+23T2 |
| 29 | 1−4.47iT−29T2 |
| 31 | 1+(3+3i)T+31iT2 |
| 37 | 1+(4−4i)T−37iT2 |
| 41 | 1+(−2.23+2.23i)T−41iT2 |
| 43 | 1+7.16iT−43T2 |
| 47 | 1+(7.30+7.30i)T+47iT2 |
| 53 | 1+1.41iT−53T2 |
| 59 | 1+(5.88+5.88i)T+59iT2 |
| 61 | 1−10.6T+61T2 |
| 67 | 1+(−7.16−7.16i)T+67iT2 |
| 71 | 1+(−3.87+3.87i)T−71iT2 |
| 73 | 1+(5.16−5.16i)T−73iT2 |
| 79 | 1+10T+79T2 |
| 83 | 1+(−5.65+5.65i)T−83iT2 |
| 89 | 1+(0.592+0.592i)T+89iT2 |
| 97 | 1+(1.16+1.16i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.90191209445210660100492773787, −10.27031139681549510500757589569, −8.998514229484911037507261386764, −8.074995037883201708109391584395, −6.93361180419447513672259264674, −6.53702416903514063514953488713, −5.29935748258280637832674056373, −4.22620033361907259745018017533, −2.11985201196596893417599245391, −0.13265617460980325265062695341,
1.81314899718030458089601765233, 3.88715925731325827312995461161, 4.48641444094425686499075859946, 6.05820037415172688065487419600, 6.81269338436042885439814493699, 8.237116444239579725139441951724, 9.059668914600270527530384009008, 9.915981090677610777242798700949, 10.96491905749480010028692554956, 11.41095687713238982829668626139