Properties

Label 2-390-39.8-c1-0-5
Degree 22
Conductor 390390
Sign 0.9700.240i0.970 - 0.240i
Analytic cond. 3.114163.11416
Root an. cond. 1.764691.76469
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s + (1.58 − 0.707i)3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (−0.618 + 1.61i)6-s + (0.707 + 0.707i)8-s + (2.00 − 2.23i)9-s − 1.00i·10-s + (1.41 + 1.41i)11-s + (−0.707 − 1.58i)12-s + (3.58 − 0.418i)13-s + (−0.618 + 1.61i)15-s − 1.00·16-s + 1.64·17-s + (0.166 + 2.99i)18-s + (1.16 + 1.16i)19-s + ⋯
L(s)  = 1  + (−0.499 + 0.499i)2-s + (0.912 − 0.408i)3-s − 0.500i·4-s + (−0.316 + 0.316i)5-s + (−0.252 + 0.660i)6-s + (0.250 + 0.250i)8-s + (0.666 − 0.745i)9-s − 0.316i·10-s + (0.426 + 0.426i)11-s + (−0.204 − 0.456i)12-s + (0.993 − 0.116i)13-s + (−0.159 + 0.417i)15-s − 0.250·16-s + 0.398·17-s + (0.0393 + 0.706i)18-s + (0.266 + 0.266i)19-s + ⋯

Functional equation

Λ(s)=(390s/2ΓC(s)L(s)=((0.9700.240i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.240i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(390s/2ΓC(s+1/2)L(s)=((0.9700.240i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 - 0.240i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 390390    =    235132 \cdot 3 \cdot 5 \cdot 13
Sign: 0.9700.240i0.970 - 0.240i
Analytic conductor: 3.114163.11416
Root analytic conductor: 1.764691.76469
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ390(281,)\chi_{390} (281, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 390, ( :1/2), 0.9700.240i)(2,\ 390,\ (\ :1/2),\ 0.970 - 0.240i)

Particular Values

L(1)L(1) \approx 1.45095+0.177139i1.45095 + 0.177139i
L(12)L(\frac12) \approx 1.45095+0.177139i1.45095 + 0.177139i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
3 1+(1.58+0.707i)T 1 + (-1.58 + 0.707i)T
5 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
13 1+(3.58+0.418i)T 1 + (-3.58 + 0.418i)T
good7 17iT2 1 - 7iT^{2}
11 1+(1.411.41i)T+11iT2 1 + (-1.41 - 1.41i)T + 11iT^{2}
17 11.64T+17T2 1 - 1.64T + 17T^{2}
19 1+(1.161.16i)T+19iT2 1 + (-1.16 - 1.16i)T + 19iT^{2}
23 14.47T+23T2 1 - 4.47T + 23T^{2}
29 1+4.47iT29T2 1 + 4.47iT - 29T^{2}
31 1+(3+3i)T+31iT2 1 + (3 + 3i)T + 31iT^{2}
37 1+(44i)T37iT2 1 + (4 - 4i)T - 37iT^{2}
41 1+(2.232.23i)T41iT2 1 + (2.23 - 2.23i)T - 41iT^{2}
43 1+0.837iT43T2 1 + 0.837iT - 43T^{2}
47 1+(1.641.64i)T+47iT2 1 + (-1.64 - 1.64i)T + 47iT^{2}
53 1+1.41iT53T2 1 + 1.41iT - 53T^{2}
59 1+(3.053.05i)T+59iT2 1 + (-3.05 - 3.05i)T + 59iT^{2}
61 1+14.6T+61T2 1 + 14.6T + 61T^{2}
67 1+(0.8370.837i)T+67iT2 1 + (-0.837 - 0.837i)T + 67iT^{2}
71 1+(9.539.53i)T71iT2 1 + (9.53 - 9.53i)T - 71iT^{2}
73 1+(1.16+1.16i)T73iT2 1 + (-1.16 + 1.16i)T - 73iT^{2}
79 1+10T+79T2 1 + 10T + 79T^{2}
83 1+(5.65+5.65i)T83iT2 1 + (-5.65 + 5.65i)T - 83iT^{2}
89 1+(5.06+5.06i)T+89iT2 1 + (5.06 + 5.06i)T + 89iT^{2}
97 1+(5.165.16i)T+97iT2 1 + (-5.16 - 5.16i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.27082751892949899950542195139, −10.18933536108040880680020979912, −9.310069222986089719251893786688, −8.505313875858648815574922900895, −7.66465788939106789943577139889, −6.90558507922383242984379306906, −5.91149871057404279815297651021, −4.25924257738273254236956166580, −3.06273931917052652215031047567, −1.42048428454966644722053941760, 1.45708633879871916704372554995, 3.12390734432927115711334986736, 3.89312823559299478481531099645, 5.20444884915956434525320809054, 6.86913082653819243260356392906, 7.87472866141934935504261711543, 8.872509610274487890706877977613, 9.115290878989004299585195909691, 10.40913308891471711300387201442, 11.04161602440410691815654506459

Graph of the ZZ-function along the critical line