L(s) = 1 | + (−0.707 + 0.707i)2-s + (1.58 − 0.707i)3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (−0.618 + 1.61i)6-s + (0.707 + 0.707i)8-s + (2.00 − 2.23i)9-s − 1.00i·10-s + (1.41 + 1.41i)11-s + (−0.707 − 1.58i)12-s + (3.58 − 0.418i)13-s + (−0.618 + 1.61i)15-s − 1.00·16-s + 1.64·17-s + (0.166 + 2.99i)18-s + (1.16 + 1.16i)19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.912 − 0.408i)3-s − 0.500i·4-s + (−0.316 + 0.316i)5-s + (−0.252 + 0.660i)6-s + (0.250 + 0.250i)8-s + (0.666 − 0.745i)9-s − 0.316i·10-s + (0.426 + 0.426i)11-s + (−0.204 − 0.456i)12-s + (0.993 − 0.116i)13-s + (−0.159 + 0.417i)15-s − 0.250·16-s + 0.398·17-s + (0.0393 + 0.706i)18-s + (0.266 + 0.266i)19-s + ⋯ |
Λ(s)=(=(390s/2ΓC(s)L(s)(0.970−0.240i)Λ(2−s)
Λ(s)=(=(390s/2ΓC(s+1/2)L(s)(0.970−0.240i)Λ(1−s)
Degree: |
2 |
Conductor: |
390
= 2⋅3⋅5⋅13
|
Sign: |
0.970−0.240i
|
Analytic conductor: |
3.11416 |
Root analytic conductor: |
1.76469 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ390(281,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 390, ( :1/2), 0.970−0.240i)
|
Particular Values
L(1) |
≈ |
1.45095+0.177139i |
L(21) |
≈ |
1.45095+0.177139i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1+(−1.58+0.707i)T |
| 5 | 1+(0.707−0.707i)T |
| 13 | 1+(−3.58+0.418i)T |
good | 7 | 1−7iT2 |
| 11 | 1+(−1.41−1.41i)T+11iT2 |
| 17 | 1−1.64T+17T2 |
| 19 | 1+(−1.16−1.16i)T+19iT2 |
| 23 | 1−4.47T+23T2 |
| 29 | 1+4.47iT−29T2 |
| 31 | 1+(3+3i)T+31iT2 |
| 37 | 1+(4−4i)T−37iT2 |
| 41 | 1+(2.23−2.23i)T−41iT2 |
| 43 | 1+0.837iT−43T2 |
| 47 | 1+(−1.64−1.64i)T+47iT2 |
| 53 | 1+1.41iT−53T2 |
| 59 | 1+(−3.05−3.05i)T+59iT2 |
| 61 | 1+14.6T+61T2 |
| 67 | 1+(−0.837−0.837i)T+67iT2 |
| 71 | 1+(9.53−9.53i)T−71iT2 |
| 73 | 1+(−1.16+1.16i)T−73iT2 |
| 79 | 1+10T+79T2 |
| 83 | 1+(−5.65+5.65i)T−83iT2 |
| 89 | 1+(5.06+5.06i)T+89iT2 |
| 97 | 1+(−5.16−5.16i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.27082751892949899950542195139, −10.18933536108040880680020979912, −9.310069222986089719251893786688, −8.505313875858648815574922900895, −7.66465788939106789943577139889, −6.90558507922383242984379306906, −5.91149871057404279815297651021, −4.25924257738273254236956166580, −3.06273931917052652215031047567, −1.42048428454966644722053941760,
1.45708633879871916704372554995, 3.12390734432927115711334986736, 3.89312823559299478481531099645, 5.20444884915956434525320809054, 6.86913082653819243260356392906, 7.87472866141934935504261711543, 8.872509610274487890706877977613, 9.115290878989004299585195909691, 10.40913308891471711300387201442, 11.04161602440410691815654506459