L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + 5-s + (0.499 − 0.866i)6-s + (1.5 − 2.59i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (−0.5 − 0.866i)11-s − 0.999·12-s + (2.5 + 2.59i)13-s − 3·14-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)16-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + 0.447·5-s + (0.204 − 0.353i)6-s + (0.566 − 0.981i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (−0.150 − 0.261i)11-s − 0.288·12-s + (0.693 + 0.720i)13-s − 0.801·14-s + (0.129 + 0.223i)15-s + (−0.125 − 0.216i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.36722 - 0.375758i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36722 - 0.375758i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 - T \) |
| 13 | \( 1 + (-2.5 - 2.59i)T \) |
good | 7 | \( 1 + (-1.5 + 2.59i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.5 + 4.33i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 10T + 31T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1 + 1.73i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9T + 47T^{2} \) |
| 53 | \( 1 + 13T + 53T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6 - 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1 + 1.73i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 16T + 73T^{2} \) |
| 79 | \( 1 + 10T + 79T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6 - 10.3i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.12404713016780228056349221395, −10.34764191178301719309077505078, −9.515933477543360842369224289040, −8.687890017258664319130095368439, −7.73415438426780140686718026043, −6.62330776080705882361830139222, −5.07785596282092560504841060970, −4.13057929401455010479128368689, −2.94043778047944064439256348064, −1.33862244464039955174558479217,
1.50504020283557303662799104360, 2.94655593616989399592448213886, 4.83044610181464682938803592506, 5.83154900473575940787590018557, 6.58710689688921022555872509310, 7.993971716072043059200473055327, 8.322000406059020873032228095327, 9.401552158342165510545022240980, 10.27043887772521701990008525581, 11.40655522443016623374508753724